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Mlynská dolina, 842 15 Bratislava, Slovakia

Abstract

We show that the out-radius and the radius grow linearly, or “al-
most” linearly, in iterated line digraphs. Further, iterated line digraphs
with a prescribed out-center, or a center, are constructed. It is shown
that not every line digraph is admissible as an out-center of line di-
graph.
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1. Introduction

Line digraphs are useful and important in various problems. In this paper we
concentrate on iterated line digraphs, and on their radii (in [4] the diameter
and average distance of iterated line digraphs are studied). In [1] Aigner
proved the following theorem.

Theorem A. If D is a strongly connected digraph, then r+(D) ≤
r+(L(D)) ≤ r+(D) + 1.

Here, r+ denotes the out-radius of a digraph. We extend this result to
a larger class of digraphs (see Lemma 3.2). This enables us to examine the
behavior of radii of iterated line digraphs (Theorems 3.3, 3.4, and 3.6). In
particular, it is shown that if D is strongly connected then the out-radius of
Li(D) increases linearly with i while the radius of Li(D) differs from i by
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at most a constant (depending only on D). This should be contrasted with
iterated line graphs, the radius of which satisfies inequalities [6]:

i −
√

2 log2 i + cG < r(Li(G)) < i −
√

2 log2 i + c′G,

and hence its growth is slower than linear. (Here, cG and c′G are constants
depending only on G, and G is any graph different from a path, a cycle, and
a claw K3,1.)

Further, we consider centers in iterated line digraphs. It is easily seen
that for every digraph D there is a digraph H having D as its center (for the
graph version of this result, see [3, p.41]). We generalize this observation
by investigating conditions under which Li(D) is a center of some Li(H)
for all i (or for all i up to some fixed number). Finally, we show that there
exist line digraphs which are not out-centers of any line digraphs. This may
again be compared with the case of graphs, where every line graph serves
as a center of some line graph [5].

The outline of this paper is as follows. In section 2 we build our basic
tool for counting the distances in iterated line digraphs. In section 3 we
examine the functions r+(Li(D)) and r(Li(D)). Finally, section 4 is devoted
to out-centers and centers in iterated line digraphs.

2. Preliminaries

Let D be a digraph. As usual, by V (D) we denote the node set of D and
by E(D) the arc set of D; idD(u) denotes the input degree and odD(u) the
output degree of a node u in D. If u and v are nodes in D, then dD(u, v)
denotes the length of the shortest path from u to v in D. If there is no path
from u to v, we set dD(u, v) = ∞. Throughout the paper, by a path (a
cycle) we always mean a directed path (a directed cycle).

The line digraph L(D) of a digraph D is a digraph whose nodes are the
arcs of D, with two nodes uv and xy joined by an arc in L(D) if and only
if v = x. If D has no arcs, then L(D) is an empty digraph. By L0(D) we
denote the digraph D. The i-iterated line digraph of D, Li(D), is L(Li−1(D))
where i ≥ 1.

Let u be a node in D. Then:
out-eccentricity of u is e+

D(u) = max{dD(u, v) : v ∈ V (D)} ;
in-eccentricity of u is e−D(u) = max{dD(v, u) : v ∈ V (D)} ;
eccentricity of u is eD(u) = max{e+

D(u), e−D(u)}.

Using various eccentricities we obtain various radii and various centers. The
out-radius r+(D) (in-radius r−(D), radius r(D)) is the minimum value of
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e+
D(u) (e−D(u), eD(u)) over all nodes u of D; and the out-center C+(D) (in-

center C−(D), center C(D)) is the subgraph of D induced by nodes with
the minimum out-eccentricity (in-eccentricity, eccentricity).

Let D′ arise from D by reversing the orientation of all arcs. Then
e−D′(u) = e+

D(u) for every node u in D, and hence, r+(D) = r−(D′) and
C+(D) = C−(D′). This observation allows us to restrict our considerations
to radii r+ and r and to centers C+ and C only.

Definitions not included here can be found in [2] or [3].
Let D be a digraph, and let u be a node in Li(D). Then the 0-history of

u, B0(u), is simply (u); and for j ≥ 1 the j-history of u, Bj(u), is a sequence
of nodes (x0, x1, . . . , xj) of Li−j(D) such that (x0x1, x1x2, . . . , xj−1xj) is the
j−1-history of u.

Clearly, the sequence x0, x1, . . . , xj determines a trail in Li−j(D), and
there is one-to-one correspondence between the j-histories (i.e., the trails of
length j in Li−j(D) ) and the nodes in Li(D). The j-history Bj(u) will be
abbreviated to a history B(u) if i = j. Note that the history allows us to
represent a node of Li(D) in D. The following lemma enables us to count
distances in Li(D) using the distances in D.

Lemma 2.1. Let x0, x1, . . . , xn be the shortest trail in D (if such exists)
such that (x0, x1, . . . , xi) = B(u) and (xn−i, xn−i+1, . . . , xn) = B(v). Then

dLi(D)(u, v) = n − i. Moreover, dLi(D)(u, v) = ∞ if there is no required

trail in D.

Proof. Let a and b be two adjacent nodes in Li(D), B(a) = (a0, . . . , ai) and
B(b) = (b0, . . . , bi). Moreover, let B1(a) = (x, y) and B1(b) = (w, z). Then a
and b are adjacent in Li(D) if and only if y = w. Thus aj = bj−1, 1 ≤ j ≤ i,
and a0, a1, . . . , ai, bi determines a trail in D. This implies dLi(D)(u, v) = n−i
as x0, x1, . . . , xn is the shortest trail in D satisfying the assumptions of the
lemma.

Clearly, if there is no required trail in Li(D), then dLi(D)(u, v) = ∞.

We remark that in Lemma 2.1 the subtrail xi, xi+1, . . . , xn−i is a path and
dD(xi, xn−i) = n − 2i.

3. Radii in Iterated Line Digraphs

First we introduce results concerning the out-radius of iterated line digraphs.

Lemma 3.1. Let D be a digraph with out-radius t < ∞ and let u be a node

in the out-center of D such that idD(u) = 0. If Li(D) is not empty, then

either t−i ≤ r+(Li(D)) ≤ t or r+(Li(D)) = ∞.
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Proof. Suppose that r+(Li(D)) < ∞. Since Li(D) is not empty, there is a
node x in Li(D) such that B(x) = (u, x1, . . . , xi). Now idD(u) = 0 implies
that x is the unique node in the out-center of Li(D).

Let z be a node in Li(D), B(z) = (z0, . . . , zi), and let u, y1, . . . , yn be the
shortest trail in D such that yn−i+j = zj , 0 ≤ j ≤ i. Then yj = xj , 1 ≤ j ≤ i,
as r+(Li(D)) = e+

Li(D)
(x) < ∞. By Lemma 2.1, dLi(D)(x, z) = dLi(D)(u, z0),

and hence r+(Li(D)) ≤ t.

Let v be a node in D with dD(u, v) = t. Suppose that t ≥ i. Then
there is a node z in Li(D) with B(z) = (z0, . . . , zi−1, v). Now dLi(D)(x, z) =

dD(u, z0) ≥ t−i, and hence r+(Li(D)) ≥ t−i.

By Lemma 3.1 if a digraph D with out-radius t < ∞ contains no cycle and
Li(D) is not empty, then either t−i ≤ r+(Li(D)) ≤ t or r+(Li(D)) = ∞.

Lemma 3.2. Let D be a digraph with out-radius t < ∞ and let u be a node

in the out-center of D such that idD(u) ≥ 1. Then t ≤ r+(Li(D)) ≤ t+i.

Proof. As idD(u) ≥ 1, there is a node v in D with vu ∈ E(D). Since
r+(D) < ∞, we have dD(u, v) < ∞, and thus u lies in a cycle in D. Hence
there is a node x in Li(D) with B(x) = (x0, . . . , xi−1, u). Since e+

D(u) = t,
we have r+(Li(D)) ≤ e+

Li(D)
(x) ≤ e+

D(u) + i = t + i, by Lemma 2.1.

Let z be a node in the out-center of Li(D), B(z) = (z0, . . . , zi), and let
w be a node in D such that dD(zi, w) = e+

D(zi). Clearly, there is a node, say
y, in Li(D) such that B(y) = (y0, . . . , yi−1, w) for some y0, . . . , yi−1. Now
r+(Li(D)) ≥ dLi(D)(z, y) ≥ dD(zi, w) = t.

Theorem 3.3. Let D be a digraph no two of whose cycles are joined by a

path, and assume that D contains at least one cycle. Then there are numbers

k and t such that for every i ≥ k either r+(Li(D)) = t or r+(Li(D)) = ∞.

Proof. Since D contains cycles, no two of which are joined by a path, there
are numbers jD and iD such that Li(D) is isomorphic to Li+jD(D) for every
i ≥ iD (see e.g. [2, Theorem 10.9.1]). Suppose that there is k ≥ iD such
that r+(Lk(D)) = t < ∞. Distinguish two cases:

(i) There is a node u in Lk(D) with idLk(D)(u) = 0. Then u is in

the out-center of Lk(D). By Lemma 3.1 either r+(Lk+i(D)) = ∞ or t =
r+(Lk+jD(D)) ≤ r+(Lk+i(D)) ≤ r+(Lk(D)) = t for all i, 0 ≤ i ≤ jD.

(ii) idLk(D)(u) ≥ 1 for every node u in Lk(D). By Lemma 3.2 we have

t = r+(Lk(D)) ≤ r+(Lk+i(D)) ≤ r+(Lk+jD(D)) = t for all i, 0 ≤ i ≤ jD.
Thus, r+(Li(D)) = t or r+(Li(D)) = ∞ for every i ≥ k, as required.
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Now we prove the main result concerning the out-radius.

Theorem 3.4. Let D be a digraph containing two cycles joined by a path

(possibly of length 0). Then either there are k and t such that r+(Li(D)) =
i + t for every i ≥ k or there is k such that r+(Li(D)) = ∞ for every i ≥ k.

Proof. Let C1 = (a1, a2, . . . , al1 , a1) and C2 = (b1, b2, . . . , bl2 , b1) be two
cycles in D joined by a path. Suppose that there is j ≥ 0 such that
r+(Lj(D)) < ∞. Distinguish two cases:

(i) There is a node u in Lj(D) with idLj(D)(u) = 0. Then B(u) =

(u0, u1, . . . , uj) and idD(u0) = 0. Since r+(Lj(D)) = e+
Lj(D)

(u) < ∞, there

are paths P1 and P2 from uj to C1 and C2, respectively. For k = 1, 2
denote by Bk the trail starting at u0, traversing B(u), Pk, and then con-
tinuing once around the cycle Ck. Clearly, both B1 and B2 can be com-
pleted to i-histories, say Bi(xi) and Bi(yi), for every sufficiently large i. As
idLi(D)(x

i) = idLi(D)(y
i) = 0 and xi 6= yi, we have r+(Li(D)) = ∞.

(ii) idLj(D)(u) ≥ 1 for every node u in Lj(D). Then r+(Lj(D)) ≤

r+(Li(D)) ≤ r+(Lj(D)) + i − j for every i ≥ j, by Lemma 3.2. Let x
and y be nodes in Li(D), i ≥ j, such that B(x)=(a1, a2, . . . , al1 , a1, a2, . . .)
and B(y)=(b1, b2, . . . , bl2 , b1, b2, . . .). The cycles C1 and C2 may have some
common paths. Let l be the maximum length of a path common to C1 and
C2. Let z be a node in the out-center of Li(D) and B(z) = (z0, . . . , zi).
Suppose that dLi(D)(z, x) < i − l. By Lemma 2.1 zi−l−1, zi−l, . . . , zi lies on

C1, and hence dLi(D)(z, y) ≥ i − l. Thus, i − l ≤ r+(Li(D)) ≤ r+(Lj(D)) +
i − j for every i ≥ j.

By Lemma 3.2 r+(Li+1(D)) ≤ r+(Li(D)) + 1 for every i ≥ j, so that
r+(Li+1(D)) = r+(Li(D))+1 with finitely many (at most r+(Lj(D))−j+l)
exceptions. Hence, there are numbers k and t such that r+(Li(D)) = i + t
for every i ≥ k, as required.

From now on we consider the radius (as opposed to the out-radius) of iter-
ated line digraphs. Since r(D) < ∞ if and only if D is strongly connected,
we consider only nontrivial strongly connected digraphs.

Lemma 3.5. For each nontrivial strongly connected digraph D we have

r(L(D)) ≥ r(D).

Proof. Let x be a node in L(D) with B(x) = (u, v). We show that
eL(D)(x) ≥ eD(u).
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Let z be a node in D for which e−D(u) = dD(z, u), and let y be a node
in L(D) such that B(y) = (z, w) for some w. By Lemma 2.1 dL(D)(y, x) ≥

dD(z, u), and hence e−
L(D)(x) ≥ e−D(u).

Similarly, if z′ satisfies e+
D(u) = dD(u, z′), choose y′ from V (L(D)) such

that B(y′)=(z′, w′). Then e+
L(D)(x) ≥ dL(D)(x, y′) ≥ dD(u, z′) = e+

D(u).

Thus, eL(D)(x) ≥ eD(u) for each node x in L(D), B(x) = (u, v), and
hence r(L(D)) ≥ r(D).

Theorem 3.6. Let D be a nontrivial strongly connected digraph different

from a cycle. Then there are t and t′, such that i+t ≤ r(Li(D)) ≤ i+t′ for

every i ≥ 0.

Proof. Clearly, D contains two cycles joined by a path (possibly of
length 0). Moreover, the digraph Li(D) is not empty and r(Li(D)) < ∞ for
every i ≥ 0. By Theorem 3.4. there are k′ and t′ such that r+(Li(D)) = i+t′

for every i ≥ k′, and hence there is t ≤ t′ such that i + t ≤ r(Li(D)) for
every i ≥ 0.

Let u be a central node in D, and let C be the shortest cycle in D
containing u, C = (u, a2, . . . , al, u). Then there is a node x in Ll(D) such
that B(x) = (u, a2, . . . , al, u). We have r(Ll(D)) ≤ eLl(D)(x) ≤ eD(u) + l =

r(D) + l, by Lemma 2.1. Analogously, if j > 1, then r(Ljl(D)) ≤ jl + r(D)
(take a trail going j times around C for B(x)). By Lemma 3.5 we have
r(Li(D)) ≤ r(L(j+1)l(D)) ≤ (j+1)l + r(D) for all i, jl < i ≤ (j+1)l, and
hence r(Li(D)) ≤ i+r(D)+l for every i ≥ 0.

4. Centers in Iterated Line Digraphs

First we introduce results concerning the out-centers. In what follows, by
H ⊇ D we mean that D is a subgraph of H, and if D and H are isomorphic,
we write D ∼= H.

Theorem 4.1. Let D be a nontrivial strongly connected digraph. Then there

is a digraph H, H ⊇ D, such that C+(Li(H)) = Li(D) for every i ≥ 0.

Proof. Let d = max{2, d(D)}, where d(D) denotes the diameter of D.
As D is strongly connected, we have d < ∞. Let V (H) = V (D) ∪
{a1, b1, . . . , ad, bd} and E(H) = E(D) ∪ {ua1, ub1 : u ∈ V (D)} ∪
{ajaj+1, bjbj+1 : 1 ≤ j ≤ d−1} ∪ {adad−1, bdbd−1} (see Figure 1). Let
i ≥ 0. We show that C+(Li(H)) = Li(D).
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Let u be a node in Li(D). For every node x in D, it holds that
e+
H(x) = dH(x, ad) = d. Since there is a node v in Li(H) with B(v) =

(ad, ad−1, ad, . . .), we have e+
Li(H)

(u) = d + i, by Lemma 2.1.

Let u be a node from V (Li(H)) − V (Li(D)) with B(u) = (x0, . . . , xi).
Then either dH(xi, ad) = ∞ or dH(xi, bd) = ∞ as xi is not in D.

A digraph D is antisymmetric if and only if uv /∈ E(D) for every vu ∈ E(D).
We remark that if D is an antisymmetric strongly connected digraph, then
there is an antisymmetric digraph H, H ⊇ D, such that C+(Li(H)) = Li(D)
for every i ≥ 0. (Just replace the two-cycles at ad−1 and bd−1 by three-
cycles.) In contrast with Theorem 4.1, if D is not strongly connected we
cannot guarantee the existence of H for which C+(Li(H)) ∼= Li(D), even
if i = 1.

ad ad−1 a2 a1

D

b1 b2 bd−1 bd

H :

Figure 1

Theorem 4.2. Let D be a digraph that is not strongly connected with

C+(D) 6= D and idD(u) ≥ 2 for every node u in D. Then there is no

digraph H for which C+(L(H)) ∼= D.

Proof. Suppose that H satisfies C+(L(H)) ∼= D. Let F = C+(L(H)), and
let t = r+(L(H)). Clearly, e+

L(H)(u) = t < ∞ for every node u in F . As D is

not strongly connected, there are nodes x and y in F such that dF (x, y) = ∞
while dL(H)(x, y) ≤ t. Denote by P a path from x to y in L(H). Let w be
the last node on P that is not in F and let v be a successor of w in P . Since
idF (v) ≥ 2, there are nodes v1 and v2 in F such that v1v, v2v ∈ E(F ). Then
e+
L(H)(vi) = t, i = 1, 2, and e+

L(H)(w) > t.
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It is well-known that if x1y1, x1y2, and x2y1 are arcs in a line digraph, then
so is x2y2 (see e.g. [2, Theorem 10.8.4]). Thus, wu is an arc in L(H) if and
only if so are viu, i = 1, 2. Now if u is from V (L(H)) − {v1, w} we have
dL(H)(w, u) = dL(H)(v1, u), while dL(H)(w, v1) = dL(H)(v2, v1) ≤ t. Hence

e+
L(H)(w) ≤ t, a contradiction.

Let D1 be a digraph on n ≥ 5 nodes, say u1, u2, . . . , un, and let E(D1) =
{uiui+1, uiui+2 : 1 ≤ i ≤ n} (the addition is modulo n). Let D′

1 be iso-
morphic to and distinct from D1, and let D consist of D1, D′

1, and all arcs
joining the nodes of D1 to nodes in D′

1. Then L(D) satisfies the assump-
tions of Theorem 4.2, and hence there is an infinite number of antisymmetric
digraphs D such that L(D) 6∼= C+(L(H)) for every digraph H.

From now on we consider the centers (instead of the out-centers) in
iterated line digraphs. Here, the situation is different since each i- iterated
line digraph is admissible as a center of i-iterated line digraph, i ≥ 0.

Theorem 4.3. Let D be a digraph and let j ≥ 0. If Lj(D) is not empty then

there is a digraph H, H ⊇ D, such that C(Li(H)) = Li(D) for every i ≤ j.

Proof. Let k =
⌈

j+1
2

⌉

. Add to D 2(k+1) new nodes a1, a2, . . . , ak+1, b1,

b2, . . . , bk+1, and 4k arcs aiai+1, ai+1ai, bibi+1, bi+1bi, 1 ≤ i ≤ k. Moreover,
subdivide each of the added arcs not incident with ak+1 or bk+1 (see Figure 2
for the case k = 2). Finally, join every node u of D to a1 and b1 by paths of
length k, and join a1 and b1 to every node u in D by another pair of paths
of length k. Do this so that all 4|V (D)| paths are pairwise internally node
disjoint (that is, we have appended 4(k−1)|V (D)| new vertices).

Denote by H the resulting digraph. Then e+
H(x) = e−H(x) = 3k−1 for

every node x of D (although D can be disconnected), and both e+
H(x) and

e−H(x) are greater than 3k−1 for every node x from V (H)−V (D). Let i ≤ j.
We show C(Li(H)) = Li(D).

Let u be a node in Li(D). As eH(x) = 3k−1 for every node x of D, we
have eLi(H)(u) ≤ 3k−1+i, by Lemma 2.1. Let v be a node in Li(H), for
which B(v) = (. . . , ak+1, ak, ak+1). Then dLi(H)(v, u) = 3k−1+i, and hence
eLi(H)(u) = 3k−1+i.

Let u be a node from V (Li(H)) − V (Li(D)), B(u) = (x0, x1, . . . , xi).
Since i < 2k either x0 or xi is not in D. Suppose that x0 /∈ V (D). Let
v and z be nodes in Li(H) such that B(v) = (. . . , ak, ak+1) and B(z) =
(. . . , bk, bk+1). Then, by Lemma 2.1, dLi(H)(v, u) ≥ 3k+i or dLi(H)(z, u) ≥

3k+i, and hence e−
Li(H)

(u) ≥ 3k+i. Similarly, e+
Li(H)

(u) ≥ 3k+i if xi /∈

V (D), and hence eLi(H)(u) ≥ 3k+i.
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a3 a2 a1

D

b1 b2

b3

H :

Figure 2

We remark that if D is an antisymmetric digraph and Lj(D) is not empty,
then there is an antisymmetric digraph H, H ⊇ D, such that C(Li(H)) =

Li(D) for every i ≤ j. (Just choose k = max{2,
⌈

j+1
2

⌉

} and replace the

two-cycles at ak+1 and bk+1 by three-cycles.) Theorem 4.3 is best possible
in a sense, as shown by Corollary 4.5 and Corollary 4.6 for digraphs and
antisymmetric digraphs, respectively.

Theorem 4.4. Let D be a digraph with a nonempty arc set, each arc of

which is contained in a cycle of length at most l. Then there is no H,

H ⊃ D, such that r(L(H)) ≥ l and C(Li(D)) = Li(D) for every i ≥ 0.

Proof. Suppose that there is H ⊃ D satisfying the assumptions of theorem.
Since H ⊃ D, we have E(H) ⊃ E(D) and r(L(H)) = t < ∞.

Write H ′ = L(H) and D′ = L(D). Then V (H ′) − V (D′) 6= ∅ and H ′ is
strongly connected. Thus, there is a cycle, say C1, in H ′ passing through a
node, say x, of D′ such that C1 6⊆ D′. Let C2 be a cycle of length l2 ≤ l in
D′ passing through the node x (i.e,̇ the arc x of D). Denote by l1 the length
of C1. There are a ∈ V (Ll1l2(H ′)) − V (Ll1l2(D′)) and b ∈ V (Ll1l2(D′))
such that V (B(a)) = V (C1), V (B(b)) = V (C2), and x is the initial and
terminal node of both B(a) and B(b). (The B(a) circles l2 times around
C1 and B(b) circles l1 times around C2.) In what follows we show that
eLl1l2 (H′)(a) ≤ eLl1l2 (H′)(b).

We have eH′(x) = r(H ′) = t. Suppose that eH′(x) = e+
H′(x) (the case

eH′(x) = e−H′(x) can be proved similarly). Then there is a node y in H ′

such that dH′(x, y) = t. Since H ′ is strongly connected, there is a node u
in Ll1l2(H ′) with B(u) = (y, . . .). As t ≥ l ≥ l2, y is not in C2, and hence
eLl1l2 (H′)(b) ≥ dLl1l2 (H′)(b, u) = t + l1l2, by Lemma 2.1.
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Now let v be a node in Ll1l2(H ′) with B(v) = (v0, . . . , vl1l2). Then
dLl1l2 (H′)(a, v) ≤ dH′(x, v0) + l1l2 ≤ t + l1l2 and dLl1l2 (H′)(v, a) ≤
dH′(vl1l2 , x)+ l1l2 ≤ t+ l1l2, and hence eLl1l2 (H′)(a) ≤ r+ l1l2 ≤ eLl1l2 (H′)(b),
a contradiction.

Corollary 4.5. Let D be a digraph, each arc of which lies in a two-cycle

and assume that C(D) 6= D. Then there is no H, H ⊇ D, such that

C(Li(H)) = Li(D) for every i ≥ 0.

Proof. Suppose that H satisfies C(Li(H)) = Li(D) for every i ≥ 0. Let
e = u1u2 be an arc in D. Then also f = u2u1 ∈ E(D), and since C(D) 6= D
there is another arc, say g = v1v2, in D. Now v1 6= u2 or v1 6= u1, and
hence dL(H)(e, g) ≥ 2 or dL(H)(f, g) ≥ 2, respectively. Thus r(L(H)) ≥ 2,
contradicting Theorem 4.4.

Corollary 4.6. Let D be an antisymmetric digraph, each arc of which lies

in a triangle and assume that C(D) 6= D. Then there is no antisymmetric

digraph H, H ⊇ D, such that C(Li(H)) = Li(D) for every i ≥ 0.

Proof. Suppose that H satisfies C(Li(H)) = Li(D) for every i ≥ 0. Let e =
uv be an arc in D and let T be a triangle in D containing e. Since C(T ) = T ,
there is an arc f in D such that f /∈ E(T ). As D is strongly connected,
we may assume that f = uz, z 6= v. Since H is antisymmetric, dH(v, u) ≥ 2,
and hence dL(H)(e, f) ≥ 3. Thus r(L(H)) ≥ 3, which contradicts Theo-
rem 4.4.
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