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Abstract

A digraph D is said to satisfy the k-Meyniel’s condition if each odd
directed cycle of D has at least k diagonals.

The study of the k-Meyniel’s condition has been a source of many
interesting problems, questions and results in the development of Ker-
nel Theory.

In this paper we present a method to construct a large variety of
kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy
the k-Meyniel’s condition.
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1. INTRODUCTION

For general concepts we refer the reader to [1]. If D is a digraph, then V(D)
and F'D or F(D) will denote the sets of vertices and arcs of D respectively.
We write D, C D (resp: D, C* D) whenever D, is a subdigraph (resp:
induced subdigraph) of D. For S,,S, C V(D), the arc u, u, of D will be
called an S, S,-arc provided that u, € S, and u, € S,; D[S,] will denote
the subdigraph of D induced by S, and D[S,, S,] the subdigraph of D with
vertex set S, U S, whose arcs are the S, S,-arcs of D. The asymmetrical
part of D (resp: symmetrical part of D), which is denoted by Asym D (resp:
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Sym D) is the spanning subdigraph of D whose arcs are the asymmetrical
(resp: symmetrical) arcs of D.

The set I C V(D) is independent if FD[I] = (. A kernel N of D is an
independent set of vertices such that for every z € (V(D) — N) there exists
a z N-arc in D. A semikernel S of D is an independent set of vertices such
that for every z € (V(D) — S) for which there exists an S z-arc, there also
exists a z S-arc.

A digraph D is called

(i) quasi K P-digraph if every proper induced subdigraph of D has a kernel,
(ii) kernel-perfect digraph or KP-digraph if every induced subdigraph of D
has a kernel,
(iii) critical kernel-imperfect or CKI-digraph if D is a quasi K P-digraph
and has no kernel.

It was proved by Neumann-Lara in [9] that D is a K P-digraph iff every
induced subdigraph of D has a non empty semikernel. We will say that a
digraph A is a co-rooted tree if A is an asymmetrical digraph whose under-
lying graph is a tree and there exists one and only one vertex v € F(A) (the
co-root of A) such that there is no arc in A whose initial endvertex is v.

Let C = (1,2,...,m,1) be a directed cycle of D, we denote by ¢(C)
its length, for i # j 1,7 € V(C) we denote by (i,C,j) the ij-directed
path contained in C' and we denote by ¢(i,C, j) its length; an arc f =ij €
(FD —FC) is a diagonal of C'iff i # 7, i,j € V(C) and £(:,C,5) < £(C) —1
and f is a pseudodiagonal when ¢(i,C,j) < £(C) — 1.

A digraph D is said to satisfy the k-Meyniel’s condition if each odd
directed cycle of D has at least k diagonals.

The study of the k-Meyniel’s condition has been a source of many inter-
esting problems, questions and results in the development of Kernel Theory
(see by example [2], [3], [4], [5], [6]).

In this paper we present a method to construct a large variety of
kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the
k-Meyniel’s condition. This method is also the basis in the study of exten-
sions of kernel-perfect digraphs to critical kernel-imperfect digraphs (see [8]).

Theorem 1.1 [8]. Let D,, D, and D be digraphs such that V(D,)NV(D,) =
{v} and D = D, UD,. Then D is a KP-digraph iff D, and D, are KP-
digraphs.
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Theorem 1.2. Let G be a connected graph without cycles and for each
e =w, w, € E(G) let ve be a digraph such that {w,,w,} C V(7e), V(7)) N
V(G) = {w,,w,}. Suppose that the digraphs (ve—V (G))ecp(q) are mutually

disjoint. The digraph D = U e is a K P-digraph iff v. is a K P-digraph
e€E(G)
for each e € E(G).

Proof. Theorem 1.2 follows directly from Theorem 1.1 proceeding by in-
duction on |V (G)|. |

Theorem 1.3 [6]. Supppose that V(D) has a partition {V,,V,} such that
every V, V,-arc in D is symmetric and D[V,] and D[V,]| are K P-digraphs.
Then D is a K P-digraph.

Theorem 1.4 [6]. If D is a CKI-digraph, there is no a partition {V,,V,}
of V(D) such that D[V,,V,] C Sym D; in other words Asym D is strongly
connected.

2. 7,-SYSTEM AND 7,-CONSTRUCTION

Definition 2.1. Let D be a multidigraph and u € V(D); a partition
mo = {0 ut ™™ ul )} of Fy(D) = Fi (D) U Fy (D) will be called
a T-partition in u if it satisfies the following two properties:

(1) u* C F, (D) for each i € {0,1,...,m(u) —1}.

(2) uy = FH(D).
FF(D) (resp: F, (D)) denotes the set of arcs of D whose initial (resp:
terminal) endvertex is w.

When 7, is a T-partition in © we denote by 7, the set

ﬁu:{(u,qu),(u,ui_)\ie{(),l,...,m(u)—l}}.

Definition 2.2. A triple ¢, = (D,,U, A) will be called a 7,-system if it
satisfies the following two properties:
(1) D, is a multidigraph, U C V(D,).
(2) A = (Ay)uev is a family of co-rooted trees with V(A,) = 7, where
Ty 1s a T-partition in u, (u,uy) is the co-root of A, and |m,| > 2.
For each uw € U and f € F,(D) we denote by m,(f) the element of m,
containing f.
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Ift, = (D,,U,A) is a 7,-system, then 7,(¢,) denotes the digraph defined as
follows:

V(To(to)) = V(Do - U) U U V(AU)7
uelU
F(To(to)) = {f*|f€FD0}

for each f =wz € FD,, f*is defined by

f, when { w,z } € (V(D,) — U),
|, when w € (V(D,) — U) and z € U,
e (w,wy)z, when w € U and z € (V(D,) — U),
(w,ws) (2, 7.(f)), when { w2} CU.

Definition 2.3. A pair t, = (t,,7) will be called a 7,-system if t, =
(D,,U,A) is a 7,- system and v = (7Vu)uer is a family, where v, =
(v feF(A,) 18 a family of internally disjoint directed paths. Moreover, if

f = w, w,, then %Jj is a w, w,-directed path of positive even length and
V(y)) NV (A, = { w,,w, }. Also we denote t, = (D,,U, A,~).

Note that V(’y&)ﬁ\/('yf:z) =0 forany f, € F A, , f, € FA,, and u, # u,.
If t, = (t,,7) is a 7,-system, then we denote 7,(t,) = 7,(t,) U
U

uelU feEF Ay
Definition 2.4 [5]. If D is a digraph and N,Q C V(D), N = V(D) — N,
Q¢ = V(D) — @, N is said to be an independent kernel modulo @ (i.k.
mod Q) of D iff

(i) N is independent,

(ii) For every w € NN Q° there exists a w N-arc.

Observation 2.1. If D is a directed path of positive even length say D =
(Ug, Uy y .., U2p),n > 1, then D satisfies the following properties:
(i) If Nisanik. mod {ug,} of D, then u, € N iff ug, € N.
(i) {u;|i=2k, 0<k<n }isanik. mod {us,}, in fact it is a kernel of
D which contains { u,, u2, }.
(iii) N = {ugi+1 | 0 < i <n—1}is an i.k. mod {ug,} of D such that
{u,, uzm} € N€.
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Definition 2.5. Let D be a multidigraph, R,7 C V(D); T will be called
R-homogeneous whenever T'C R or T'C (V(D) — R).

Lemma 2.1. Let A be a co-rooted tree with co-root a,, |V(A)| > 2 and

(Wf)f:(Uf,yf)eFA a family of internally disjoint directed paths of positive even

length such that v/ is a ug vg-directed path and V(v )NV (A) = {uys,vs}. If

N is an i.k. mod {a,} of U 7, then V(A) is N-homogeneous. Moreover,
feFA

when V(A) C N€ there is no a, N-arc in  |J ~/.

feFA
Proof. The proof is by induction on |V(A)|. If |V(A)| = 2 the result is a
directed consequence of Observation 2.1 (i). Suppose that |V (A)| > 2 and
let ¢ = uw € F(A) be an arc such that 6, (u) = 0, N be an i.k. mod {a,}

of U 7/ and A, = A — {u}. Clearly we have:
feFA

(1) Nn U V(yf)isanik. mod {a,} of U ~/ (because d;(u)=0)
FEFA, fEFA,
thus by the inductive hypothesis V' (A4,) is N-homogeneous.
(2) NNV(49) is an i.k. mod {w} of v9 and Observation 2.1 (i) implies
{u,w} is N-homogeneous.
It follows from (1) and (2) that V(A) is N-homogeneous. When V(A) C N¢

it follows from the choice of a, that there is no a, |J V(y/)-arc, so there
FeFA

is no a, N-arc in  |J ~f). |
fEFA

Theorem 2.1. Let t, = (D,,U,A,v) be a 7,-system. If D, has a kernel,
then D = 7,(t,) has a kernel.

Proof. Let N, be a kernel of D, Observation 2.1 implies that for each u €
Uand f =w, w, € F(A,) there exist th’f, i € {0,1} independent kernels

mod {w,} of v/ such that { w,,w, } C Nif and { w,,w, } C ( N;f)c. It
is easy to see by using Lemma 2.1 that

N = [Noﬂ(V(Do)—U)]U( U U NZ,f)

weN,NU  fEFA,

u(u U ;,f)
WEN,NUC  fEF(Ay)

is a kernel of 7, (t,). |
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Theorem 2.2. Lett, = (D,,U,A,v) be a 7,-system. If D = 7,(t,) has a
kernel, then D, has a kernel.

Proof. Let N be a kernel of D; it is easy to see that for each u € U,

Nn( U V() isanik mod { (u,uy) }of U =/ and Lemma 2.1
fEFA, fEF A,

implies V(A4,) is NN ( U V(v)))-homogeneous and hence V(A,) is N-
feFA

u

homogeneous and when V(A,) C N€ there is no

NN ( U V(’y{:)) ] -arc

JEF Ay

(u’ u-‘r)

in D and it follows that

JWZ{NﬂU“m—LJ U v u{ueU|V(4) SN}

uelU feEFA,

is a kernel of D,. ]

Definition 2.6. Let A be a co-rooted tree, a subset S of V(A) will be called
an initial section of A if for each w € A such that there exists a wS-directed
path in A, we have w € S.

Clearly the empty set is an initial section of any co-rooted tree.

Theorem 2.3. Lett, = (D,,U, A,v) be a T,-system. Suppose that for each

non trivial family S = (Sy)ucv, where Sy is an initial section of A,, the

digraph D, — \J {f € FD, | f* incides in S, } is a KP-digraph (for each
uelU

f € FD,, f* denotes the arc of 7,(t,) defined as in Definition 2.2). If every
proper induced subdigraph of D, has a kernel, then every proper induced
subdigraph of D = 1,(t,) has a kernel.

Proof. First we recall that if G and H are digraphs then GN H denote the
digraph whose vertex set is V(G) NV (H) and A(GN H) = A(G) N A(H).
Now, if Theorem 2.3 were false, D would contain a proper induced CKI-
subdigraph. Let H be a proper induced C' K I[-subdigraph of D. First we
will prove that for each u € U,

HND =D| U vKd

fEF(Au—Su)

U vd)

fEFA,

i
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where S = (S, = V(Ay,) — V(H))uev is a family such that S, is an initial
section of A4,.

Let w € U, when HN D

U v 5)]:9[ U vw@],thensu:@

fEFAy feEFA,
satisfies the required properties. If
HoD| |J ved|ep| U vOd)
feFA, feEFA,
since
HoD | |J v = U HND V()]
JEFAy fEFA,

then there exists f = w,w, € F A, such that HND [V(’y{f)] ¢D [V(’y{f)] =
v, Since Asym H is strongly connected (see Theorem 1.3) Definition 2.3
implies

HAD[V(H))] € Dl{w,,w,)] ;
now we consider A,' = A, [{z € V(A,)| there exists a zw,-directed path
contained in A, }] and

le =HnND U V(Vz{)
fEFALL

So, we have that H,, = 0 since, if H, # () then H, = H [V(H) - V(le)}
is a KP-digraph such that H, N D {V(fy{:)} C D[{w,}] (since
HND [V(’y{j)} C D [{w,,w,}]). Furthermore, since for each f € FA,,~] isa

K P-digraph and, A, is a co-rooted tree, Theorem 1.2 implies that |J fy{:
feEFAy

is a K P-digraph and clearly H,, C* ( U 75) so Hy, is a KP-digraph;
fEFA,

Definition 2.3 and H, N D [V(yf)] C {w,} imply there is no H,, H,-arcs

in H and using Theorem 1.3 we conclude that H is a K P-digraph which is

impossible. So, we have proved that H,, = () and then

anD| |J V(&)

fEFA,

c*D U ved)
FEF(Ay—Aut)
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for each f € F'A, such that
HOD | V()| €D [Vl |,

and this implies

HnD| |J V()| =D

feFAy

U vaed

fEF(Ay—Sy)

I

where 5, = S; U Sz, 5’; = {w € V(Ay) | there exists f = wz € FA, such
that

HD[V())] et}

and S. = U V(AY). Clearly, S, is an initial section of A,,.
wES}t
Let H, be a subdigraph (not necessarily induced) of D, obtained from

H by identifying |J V(v/) with u, for each u € U such that H N
fEFAu

D [ U v ] # 0. So, we have that H = 7, (H,, U, (Au — Su)uct, Vo)
feFAy,

where, U, = UNV(H,) and =, is the restriction of v to |J F(A, — Su).
uelU
Now we will prove that H has a kernel.

If S, = 0 for each u € U, then there exists

z€ (wD) -U U vednw(p) —V(H)))

u€lU fEF A,

and hence H, is a proper induced subdigraph of D, and the hypothesis
implies H, has a kernel.
If S, # 0 for some u € U, then H, is an induced subdigraph of D, —

U {feFD,| f*incidesin S, }, where U' ={weU|S,#0} (f*is
uel’
defined as in Definition 2.2) and the hypothesis implies that H, has a kernel.

Since H, has a kernel and H = 7,(H,, Uy, (Au — Su)uet,, V), it follows
from Theorem 3.1 that H has a kernel contradicting that H is a CKI-
digraph. [

Theorem 2.4. Lett, = (D,,U, A,~) be a1, -system. If every proper induced
subdigraph of D = 7,(t,) has a kernel, then every proper induced subdigraph
of D, has a kernel.
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Proof. Let Dg be a proper induced subdigraph of D, and
D' = Ty (Dé’ U/v (Au)ueU’v ’7,) )

where U = (U NV(D]) and v is the restriction of v to |J FA,; since
uelU’
D’ is a proper induced subdigraph of D, we have that D’ has a kernel and

Theorem 2.2 implies that D] has a kernel. [ |

Theorem 2.5. Lett, = (D,,U,A,~) be a 1,-system such that for every
non trivial family S = (Sy)uev, where S, is an initial section of A, the

digraph D, — U {f € FD,|f*incides inS,} is a KP-digraph. Then T,(t,)
uelU
is a KP-digraph (resp: CKI-digraph) if and only if D, is a KP-digraph

(resp: CKI-digraph).

3. 7,-CONSTRUCTIONS

In these section we present a method to realize in a simple way some 7,-con-
structions and we obtain a large variety of K P digraphs and C' K I-digraphs
satisfying the k-Meyniel’s condition.

Let D, be a multidigraph, U C V(D,), <P be a total order in {v(f) =
{u,,u,} | fis an u,u,-arc }, and <*1“2 be a total order in { f € FD, | f is
an u, u,-arc}. We will denote by < the total order defined in

U {w(£), ) | f € F(Sym D)) N F, (D,)}

uelU

as follows: (v(f), f) < (v(g),g) if and only if v(f) <P v(g) or v(f) =v(g) =
{u,,u,} and f <"1%2 g. And for each u € U we will denote by u_(f) = {f}
when f € F(Sym D,) N F; (D,); u. = F(Asym D,) N F; (D,), uy =

1, = {up,ul u(f) | f € F(Sym Do) N Fy (Dy)}.

(clearly TI, is a 7-partition in u), AS the u’ uy-directed path defined as
follows

A'L<L = (uo—7u*(f1)’u*(f2)v e ,U,(fr),qu) )

where

(W), i) <(@(fo) fo) <. < (u(fe), fr)
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and
{fi,---. fr} =FSym D,NF; D, .

Finally we denote by A< = (AS)ucu-

Theorem 3.1. Let D, be a multidigraph which is a quasi K P-digraph and
t, = (D,,U, A<) any 1,-system defined as at the begining of this section.
For any non trivial family S = (Sy)uecr, where Sy is an initial section of

As, (D, — UA{fe€FD,| f* incides in S, }) = D,(S) is a KP-digraph.
uelU

Proof. Suppose that there exists a non trivial family S = (S, )ucrr, where
S, is an initial section of Ay, such that D,(S) is not a K P-digraph and
let D, be a CKI-digraph which is an induced subdigraph of D,(S); since
D,(S) is a proper subdigraph of D,, we have that D, is not an induced
subdigraph of D, and there exists an wv-arc in F'D, [V (D,)] — F(D,) and
Sy is not empty, so v NFD, = (. Since D, is a CKI-digraph, Theorem 1.4
implies that there exists some wv-arc in Asym D, and ) = v NF D, =
F Asym D, N F,; (D,) N FD, implies wv € F(Sym D,), so there exists
w € V(D,) such that 51'5,1 (w) # 0, where D! = Asym D, N Sym D,.

Futhermore, if zv € F7(D!), then S, # 0, 2. NF(D,) = 0 and since D, is
a CKI-digraph, Theorem 1.4 implies F(Asym D,) N F_ (D) # () and then
there exists wz € F(D!); hence 6}, (w) # 0. We have proved:

1

(a) there exists w € V(D) such that 6]'5,1 (w) # 0.
(b) if 875, (2) # 0, then &, (2) # 0.
1 1

It follows that D! contains a directed cycle C = (w,, fy, w,, f,,- -, Wn, fn, w,)
where {w,,...,w,} € V(D!), {fy,...,fa} € FD!. Since <P is a to-
tal order in {v(f) | f € SymD,} and C C D!, it follows that for some
i€{0,1,...,n}, {wi—1,w;} <P {w;, wit1} (the indices are taken mod n+1).
It follows from the definition of t, = (D,, U, A<) that

Ay, H{wi_(9) | g is a wipw; -arc}]

is a subpath of the subpath of Afuz_ between the vertices w;_(f;—1) and
w; and since fi_1 € F(C) C FD; it follows w;_(fi—1) ¢ Sw, and then

{wi_(9) | g is a wip1wi-arc} NSy, = 0. Since f; € C € D} and

{wi_(g) | g is a wiprwj-arc} N Sy, =0,
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there exists some wjjw;-arc in D, which is also in D, (S) and since D, is
an induced subdigraph of D, it follows that f; € F'(Sym D,) contradicting
fi € F(D!).
A digraph D is said to satisfy the k-Meyniel’s condition if each odd
directed cycle of D has at least k diagonals and we write D satisfies M (k).
Let D, be a digraph, we will denote by ng) the multidigraph obtained
from D, by adding to each symmetrical arc the multiplicity k. ]

Lemma 3.1. If D, is a digraph such that every odd directed cycle has a

symmetrical arc and t, = (ng), V(D,),A<,v), then 7,(t,) satisfies M (k).

Proof. Let C be an odd directed cycle contained in 7, (t,); since U
fEFAS

is a directed path of even lenght, we have that C’ is the digraph obtained

from C by identifying |J ;| with u for each u € V(D,); C" is an odd
FEFAS

directed cycle in D¥ and clearly C = ¢ (C',V(C'), A</V(C'),7'), where 7/ is

the restriction of v to U 9/ and Definition 2.3 implies that each
ueV(C') fEFAS

pseudodiagonal of C’ is a diagonal of C. [

As a direct consequence of Theorems 3.1, 2.5 and Lemma 3.1 we obtain.
Theorem 3.2. If D, is a K P-digraph (resp. CKI-digraph) such that every

odd directed cycle has a symmetrical arc andt, = (ng), V(D,),A<,~), then
7,(t,) is a K P-digraph (resp. CKI-digraph) which satisfies M (k).

Corollary 3.1. For each natural number k, there exists some K P-digraph
(resp. CKI-digraph) Dy which satisfies the k-Meyniel’s condition.

Proof. Define the digraph C :En (Jys--5dk) by V(C)={0,1,...,n—1},
F(C)={w |v—u=js(mod n) for s =1,...,k } and denote D, =C,,

(1,£2,...,£r) for an even natural number n # 0 (mod r + 1). In [6] it was

proved that D, is a C'KI-digraph; so it follows from Theorems 3.1, 2.3 and

Lemma 3.1 that 7, (¢,) is a CKI-digraph which satisfies M (k). n
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