KP-DIGRAPHS AND *CKI*-DIGRAPHS SATISFYING THE *k*-MEYNIEL'S CONDITION

H. GALEANA-SÁNCHEZ AND V. NEUMANN-LARA

Zona Comercial, Apartado 70–637 04511 México, D.F. MEXICO

Abstract

A digraph D is said to satisfy the k-Meyniel's condition if each odd directed cycle of D has at least k diagonals.

The study of the k-Meyniel's condition has been a source of many interesting problems, questions and results in the development of Kernel Theory.

In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel's condition.

Primary keywords: digraph, kernel, independent set of vertices, absorbing set of vertices, kernel-perfect digraph, critical-kernel-imperfect digraph, τ -system, τ_1 -system.

Secondary keywords: indepedent kernel modulo Q, co-rooted tree, τ -construction, τ_1 -construction.

1991 Mathematics Subject Classification: 05C20.

1. INTRODUCTION

For general concepts we refer the reader to [1]. If D is a digraph, then V(D) and FD or F(D) will denote the sets of vertices and arcs of D respectively. We write $D_0 \subseteq D$ (resp: $D_0 \subseteq^* D$) whenever D_0 is a subdigraph (resp: induced subdigraph) of D. For $S_1, S_2 \subset V(D)$, the arc $u_1 u_2$ of D will be called an $S_1 S_2$ -arc provided that $u_1 \in S_1$ and $u_2 \in S_2$; $D[S_1]$ will denote the subdigraph of D induced by S_1 and $D[S_1, S_2]$ the subdigraph of D with vertex set $S_1 \cup S_2$ whose arcs are the $S_1 S_2$ -arcs of D. The asymmetrical part of D (resp: symmetrical part of D), which is denoted by Asym D (resp: Sym D is the spanning subdigraph of D whose arcs are the asymmetrical (resp: symmetrical) arcs of D.

The set $I \subset V(D)$ is independent if $FD[I] = \emptyset$. A kernel N of D is an independent set of vertices such that for every $z \in (V(D) - N)$ there exists a z N-arc in D. A semikernel S of D is an independent set of vertices such that for every $z \in (V(D) - S)$ for which there exists an S z-arc, there also exists a z S-arc.

A digraph D is called

- (i) quasi KP-digraph if every proper induced subdigraph of D has a kernel,
- (ii) kernel-perfect digraph or KP-digraph if every induced subdigraph of D has a kernel,
- (iii) critical kernel-imperfect or CKI-digraph if D is a quasi KP-digraph and has no kernel.

It was proved by Neumann-Lara in [9] that D is a KP-digraph iff every induced subdigraph of D has a non empty semikernel. We will say that a digraph A is a *co-rooted tree* if A is an asymmetrical digraph whose underlying graph is a tree and there exists one and only one vertex $v \in F(A)$ (the *co-root* of A) such that there is no arc in A whose initial endvertex is v.

Let C = (1, 2, ..., m, 1) be a directed cycle of D, we denote by $\ell(C)$ its length, for $i \neq j$ $i, j \in V(C)$ we denote by (i, C, j) the *ij*-directed path contained in C and we denote by $\ell(i, C, j)$ its length; an arc $f = ij \in (FD - FC)$ is a *diagonal* of C iff $i \neq j$, $i, j \in V(C)$ and $\ell(i, C, j) < \ell(C) - 1$ and f is a *pseudodiagonal* when $\ell(i, C, j) \leq \ell(C) - 1$.

A digraph D is said to satisfy the k-Meyniel's condition if each odd directed cycle of D has at least k diagonals.

The study of the k-Meyniel's condition has been a source of many interesting problems, questions and results in the development of Kernel Theory (see by example [2], [3], [4], [5], [6]).

In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel's condition. This method is also the basis in the study of extensions of kernel-perfect digraphs to critical kernel-imperfect digraphs (see [8]).

Theorem 1.1 [8]. Let D_1, D_2 and D be digraphs such that $V(D_1) \cap V(D_2) = \{v\}$ and $D = D_1 \cup D_2$. Then D is a KP-digraph iff D_1 and D_2 are KP-digraphs.

Theorem 1.2. Let G be a connected graph without cycles and for each $e = w_1 w_2 \in E(G)$ let γ_e be a digraph such that $\{w_1, w_2\} \subseteq V(\gamma_e), V(\gamma_e) \cap V(G) = \{w_1, w_2\}$. Suppose that the digraphs $(\gamma_e - V(G))_{e \in E(G)}$ are mutually disjoint. The digraph $D = \bigcup_{e \in E(G)} \gamma_e$ is a KP-digraph iff γ_e is a KP-digraph

for each $e \in E(G)$.

Proof. Theorem 1.2 follows directly from Theorem 1.1 proceeding by induction on |V(G)|.

Theorem 1.3 [6]. Suppose that V(D) has a partition $\{V_1, V_2\}$ such that every $V_1 V_2$ -arc in D is symmetric and $D[V_1]$ and $D[V_2]$ are KP-digraphs. Then D is a KP-digraph.

Theorem 1.4 [6]. If D is a CKI-digraph, there is no a partition $\{V_1, V_2\}$ of V(D) such that $D[V_1, V_2] \subseteq Sym D$; in other words Asym D is strongly connected.

2. τ_1 -System and τ_1 -Construction

Definition 2.1. Let D be a multidigraph and $u \in V(D)$; a partition $\pi_u = \{u_-^0, u_-^1, \dots, u_-^{m(u)-1}, u_+\}$ of $F_u(D) = F_u^+(D) \cup F_u^-(D)$ will be called a τ -partition in u if it satisfies the following two properties:

- (1) $u_{-}^{i} \subseteq F_{u}^{-}(D)$ for each $i \in \{0, 1, \dots, m(u) 1\}$.
- (2) $u_+ = F_u^+(D).$

 $F_u^+(D)$ (resp: $F_u^-(D)$) denotes the set of arcs of D whose initial (resp: terminal) endvertex is u.

When π_u is a τ -partition in u we denote by $\overline{\pi}_u$ the set

$$\overline{\pi}_{u} = \left\{ (u, u_{+}), (u, u_{-}^{i}) \mid i \in \{ 0, 1, \dots, m(u) - 1 \} \right\}.$$

Definition 2.2. A triple $t_0 = (D_0, U, A)$ will be called a τ_0 -system if it satisfies the following two properties:

- (1) D_0 is a multidigraph, $U \subseteq V(D_0)$.
- (2) A = $(A_u)_{u \in U}$ is a family of co-rooted trees with $V(A_u) = \overline{\pi}_u$ where π_u is a τ -partition in $u, (u, u_+)$ is the co-root of A_u and $|\pi_u| \ge 2$.

For each $u \in U$ and $f \in F_u(D)$ we denote by $\pi_u(f)$ the element of π_u containing f.

If $t_0 = (D_0, U, A)$ is a τ_0 -system, then $\tau_0(t_0)$ denotes the digraph defined as follows:

$$V(\tau_0(t_0)) = V(D_0 - U) \cup \bigcup_{u \in U} V(A_u),$$

$$F(\tau_0(t_0)) = \{ f^* \mid f \in F D_0 \}$$

for each $f = w z \in FD_0$, f^* is defined by

$$f^* = \begin{cases} f, & \text{when } \{ w, z \} \subseteq (V(D_0) - U), \\ w(z, \pi_z(f)), & \text{when } w \in (V(D_0) - U) \text{ and } z \in U, \\ (w, w_+)z, & \text{when } w \in U \text{ and } z \in (V(D_0) - U), \\ (w, w_+)(z, \pi_z(f)), & \text{when } \{ w, z \} \subseteq U. \end{cases}$$

Definition 2.3. A pair $t_1 = (t_0, \gamma)$ will be called a τ_1 -system if $t_0 = (D_0, U, A)$ is a τ_0 - system and $\gamma = (\gamma_u)_{u \in U}$ is a family, where $\gamma_u = (\gamma_u^f)_{f \in F(A_u)}$ is a family of internally disjoint directed paths. Moreover, if $f = w_1 w_2$, then γ_u^f is a $w_1 w_2$ -directed path of positive even length and $V(\gamma_u^f) \cap V(A_u) = \{w_1, w_2\}$. Also we denote $t_1 = (D_0, U, A, \gamma)$.

Note that $V(\gamma_{u_1}^{f_1}) \cap V(\gamma_{u_2}^{f_2}) = \emptyset$ for any $f_1 \in F A_{u_1}, f_2 \in F A_{u_2}$ and $u_1 \neq u_2$. If $t_1 = (t_0, \gamma)$ is a τ_1 -system, then we denote $\tau_1(t_1) = \tau_0(t_0) \cup \bigcup_{u \in U} \bigcup_{f \in F A_u} \gamma_u^f$.

Definition 2.4 [5]. If D is a digraph and $N, Q \subset V(D), N^c = V(D) - N$, $Q^c = V(D) - Q$, N is said to be an independent kernel modulo Q (i.k. mod Q) of D iff

- (i) N is independent,
- (ii) For every $w \in N^c \cap Q^c$ there exists a *wN*-arc.

Observation 2.1. If *D* is a directed path of positive even length say $D = (u_0, u_1, \ldots, u_{2n}), n \ge 1$, then *D* satisfies the following properties:

- (i) If N is an i.k. mod $\{u_{2n}\}$ of D, then $u_0 \in N$ iff $u_{2n} \in N$.
- (ii) $\{u_i \mid i = 2k, 0 \le k \le n\}$ is an i.k. mod $\{u_{2n}\}$, in fact it is a kernel of D which contains $\{u_0, u_{2n}\}$.
- (iii) $N = \{u_{2i+1} \mid 0 \le i \le n-1\}$ is an i.k. mod $\{u_{2n}\}$ of D such that $\{u_0, u_{2m}\} \subseteq N^c$.

Definition 2.5. Let *D* be a multidigraph, $R, T \subseteq V(D)$; *T* will be called *R*-homogeneous whenever $T \subseteq R$ or $T \subseteq (V(D) - R)$.

Lemma 2.1. Let A be a co-rooted tree with co-root a_0 , $|V(A)| \ge 2$ and $(\gamma^f)_{f=(u_f,v_f)\in FA}$ a family of internally disjoint directed paths of positive even length such that γ^f is a $u_f v_f$ -directed path and $V(\gamma^f) \cap V(A) = \{u_f, v_f\}$. If N is an i.k. mod $\{a_0\}$ of $\bigcup_{f\in FA} \gamma^f$, then V(A) is N-homogeneous. Moreover, when $V(A) \subseteq N^c$ there is no a_0 N-arc in $\bigcup_{f\in FA} \gamma^f$.

Proof. The proof is by induction on |V(A)|. If |V(A)| = 2 the result is a directed consequence of Observation 2.1 (i). Suppose that |V(A)| > 2 and let $g = u w \in F(A)$ be an arc such that $\delta_A^-(u) = 0$, N be an i.k. mod $\{a_0\}$ of $\bigcup_{f \in FA} \gamma^f$ and $A_0 = A - \{u\}$. Clearly we have:

(1) $N \cap \bigcup_{f \in FA_0} V(\gamma^f)$ is an i.k. mod $\{a_0\}$ of $\bigcup_{f \in FA_0} \gamma^f$ (because $\delta_A^-(u) = 0$) thus by the inductive hypothesis $V(A_0)$ is N homogeneous

thus by the inductive hypothesis $V({\cal A}_{\scriptscriptstyle 0})$ is N-homogeneous.

(2) $N \cap V(\gamma^g)$ is an i.k. mod $\{w\}$ of γ^g and Observation 2.1 (i) implies $\{u, w\}$ is N-homogeneous.

It follows from (1) and (2) that V(A) is N-homogeneous. When $V(A) \subseteq N^c$ it follows from the choice of a_0 that there is no $a_0 \bigcup_{f \in FA} V(\gamma^f)$ -arc, so there

is no
$$a_0$$
 N-arc in $\bigcup_{f \in FA} \gamma^f$).

Theorem 2.1. Let $t_1 = (D_0, U, A, \gamma)$ be a τ_1 -system. If D_0 has a kernel, then $D = \tau_1(t_1)$ has a kernel.

Proof. Let N_0 be a kernel of D_0 , Observation 2.1 implies that for each $u \in U$ and $f = w_1 w_2 \in F(A_u)$ there exist $N_{u,f}^i$, $i \in \{0,1\}$ independent kernels mod $\{w_2\}$ of γ_u^f such that $\{w_1, w_2\} \subseteq N_{u,f}^0$ and $\{w_1, w_2\} \subseteq \left(N_{u,f}^1\right)^c$. It is easy to see by using Lemma 2.1 that

$$\begin{split} N &= & [N_0 \cap (V(D_0) - U)] \cup \left(\bigcup_{u \in N_0 \cap U} \quad \bigcup_{f \in FA_u} N_{u,f}^0 \right) \\ & \cup \left(\bigcup_{u \in N_0 \cap U^c} \quad \bigcup_{f \in F(A_u)} N_{u,f}^1 \right) \end{split}$$

is a kernel of $\tau_1(t_1)$.

Theorem 2.2. Let $t_1 = (D_0, U, A, \gamma)$ be a τ_1 -system. If $D = \tau_1(t_1)$ has a kernel, then D_0 has a kernel.

Proof. Let N be a kernel of D; it is easy to see that for each $u \in U$, $N \cap (\bigcup_{f \in FA_u} V(\gamma_u^f))$ is an i.k. mod $\{(u, u_+)\}$ of $\bigcup_{f \in FA_u} \gamma_u^f$ and Lemma 2.1 implies $V(A_u)$ is $N \cap (\bigcup_{f \in FA_u} V(\gamma_u^f))$ -homogeneous and hence $V(A_u)$ is N-homogeneous and when $V(A_u) \subseteq N^c$ there is no

$$(u, u_+) \left[N \cap \left(\bigcup_{f \in FA_u} V(\gamma_u^f) \right) \right]$$
-arc

in D and it follows that

$$N_0 = \left[N \cap (V(D) - \bigcup_{u \in U} \bigcup_{f \in FA_u} V(\gamma_u^f)) \right] \cup \{ u \in U \mid V(A_u) \subseteq N \}$$

is a kernel of D_0 .

Definition 2.6. Let A be a co-rooted tree, a subset S of V(A) will be called an *initial section* of A if for each $w \in A$ such that there exists a wS-directed path in A, we have $w \in S$.

Clearly the empty set is an initial section of any co-rooted tree.

Theorem 2.3. Let $t_1 = (D_0, U, A, \gamma)$ be a τ_1 -system. Suppose that for each non trivial family $S = (S_u)_{u \in U}$, where S_u is an initial section of A_u , the digraph $D_0 - \bigcup_{u \in U} \{f \in FD_0 \mid f^* \text{ incides in } S_u\}$ is a KP-digraph (for each $f \in FD_0, f^*$ denotes the arc of $\tau_0(t_0)$ defined as in Definition 2.2). If every proper induced subdigraph of D_0 has a kernel, then every proper induced subdigraph of $D = \tau_1(t_1)$ has a kernel.

Proof. First we recall that if G and H are digraphs then $G \cap H$ denote the digraph whose vertex set is $V(G) \cap V(H)$ and $A(G \cap H) = A(G) \cap A(H)$. Now, if Theorem 2.3 were false, D would contain a proper induced CKI-subdigraph. Let H be a proper induced CKI-subdigraph of D. First we will prove that for each $u \in U$,

$$H \cap D \left[\bigcup_{f \in FA_u} V(\gamma_u^f) \right] = D \left[\bigcup_{f \in F(A_u - S_u)} V(\gamma_u^f) \right],$$

where $S = (S_u = V(A_u) - V(H))_{u \in U}$ is a family such that S_u is an initial section of A_u .

Let $u \in U$, when $H \cap D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right] = D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right]$, then $S_u = \emptyset$ satisfies the required properties. If

$$H \cap D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right] \subsetneq D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right]$$

since

$$H \cap D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right] = \bigcup_{f \in FA_u} H \cap D\left[V(\gamma_u^f)\right]$$

then there exists $f = w_1 w_2 \in FA_u$ such that $H \cap D\left[V(\gamma_u^f)\right] \subsetneq D\left[V(\gamma_u^f)\right] = \gamma_u^f$. Since Asym H is strongly connected (see Theorem 1.3) Definition 2.3 implies

$$H \cap D\left[V(\gamma_u^f)\right] \subseteq D\left[\{w_1, w_2\}\right];$$

now we consider $A_u^{w_1} = A_u [\{z \in V(A_u) | \text{ there exists a } zw_1\text{-directed path contained in } A_u \}]$ and

$$H_{w_1} = H \cap D\left[\bigcup_{f \in FA_u^{w_1}} V(\gamma_u^f)\right]\,.$$

So, we have that $H_{w_1} = \emptyset$ since, if $H_{w_1} \neq \emptyset$ then $H_2 = H\left[V(H) - V(H_{w_1})\right]$ is a *KP*-digraph such that $H_2 \cap D\left[V(\gamma_u^f)\right] \subseteq D\left[\{w_2\}\right]$ (since $H \cap D\left[V(\gamma_u^f)\right] \subseteq D\left[\{w_1, w_2\}\right]$). Furthermore, since for each $f \in FA_u, \gamma_u^f$ is a *KP*-digraph and, A_u is a co-rooted tree, Theorem 1.2 implies that $\bigcup_{f \in FA_u} \gamma_u^f$

is a *KP*-digraph and clearly $H_{w_1} \subseteq^* \left(\bigcup_{f \in FA_u} \gamma_u^f\right)$ so H_{w_1} is a *KP*-digraph; Definition 2.3 and $H_2 \cap D\left[V(\gamma_u^f)\right] \subseteq \{w_2\}$ imply there is no $H_{w_1}H_2$ -arcs in *H* and using Theorem 1.3 we conclude that *H* is a *KP*-digraph which is impossible. So, we have proved that $H_{w_1} = \emptyset$ and then

$$H \cap D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right] \subseteq^* D\left[\bigcup_{f \in F(A_u - A_u^{w_1})} V(\gamma_u^f)\right]$$

for each $f \in FA_u$ such that

$$H \cap D\left[\ V(\gamma^f_u) \right] \subsetneq D\left[V(\gamma^f_u) \ \right] \,,$$

and this implies

$$H \cap D\left[\bigcup_{f \in FA_u} V(\gamma_u^f)\right] = D\left[\bigcup_{f \in F(A_u - S_u)} V(\gamma_u^f)\right],$$

where $S_u = S_u^1 \cup S_u^2$, $S_u^1 = \{w \in V(A_u) \mid \text{ there exists } f = wz \in FA_u \text{ such that}$

$$H \cap D\left[V(\gamma_u^f)\right] \subsetneq \gamma_u^f \Big\}$$

and $S_u^2 = \bigcup_{w \in S_u^1} V(A_u^w)$. Clearly, S_u is an initial section of A_u .

Let H_0 be a subdigraph (not necessarily induced) of D_0 obtained from H by identifying $\bigcup_{f \in FA_u} V(\gamma_u^f)$ with u, for each $u \in U$ such that $H \cap [$

 $D\left[\bigcup_{f\in FA_u} V(\gamma_u^f)\right] \neq \emptyset. \text{ So, we have that } H \cong \tau_1(H_0, U_0, (A_u - S_u)_{u\in U_0}, \gamma_0)$ where, $U_0 = U \cap V(H_0)$ and γ_0 is the restriction of γ to $\bigcup_{u\in U} F(A_u - S_u).$

Now we will prove that ${\cal H}_0$ has a kernel.

If $S_u = \emptyset$ for each $u \in U$, then there exists

$$z \in \left(V(D) - \bigcup_{u \in U} \bigcup_{f \in FA_u} V(\gamma_u^f) \cap (V(D) - V(H)) \right)$$

and hence H_0 is a proper induced subdigraph of D_0 and the hypothesis implies H_0 has a kernel.

If $S_u \neq \emptyset$ for some $u \in U$, then H_0 is an induced subdigraph of $D_0 - \bigcup_{u \in U'} \{ f \in FD_0 \mid f^* \text{ incides in } S_u \}$, where $U' = \{ u \in U \mid S_u \neq \emptyset \}$ (f^* is defined as in Definition 2.2) and the hypothesis implies that H_0 has a kernel

defined as in Definition 2.2) and the hypothesis implies that H_0 has a kernel. Since H_0 has a kernel and $H = \tau_1(H_0, U_0, (A_u - S_u)_{u \in U_0}, \gamma_0)$, it follows from Theorem 3.1 that H has a kernel contradicting that H is a CKIdigraph.

Theorem 2.4. Let $t_1 = (D_0, U, A, \gamma)$ be a τ_1 -system. If every proper induced subdigraph of $D = \tau_1(t_1)$ has a kernel, then every proper induced subdigraph of D_0 has a kernel.

12

Proof. Let D'_0 be a proper induced subdigraph of D_0 and

$$D' = \tau_1(D'_0, U', (A_u)_{u \in U'}, \gamma'),$$

where $U' = (U \cap V(D'_0))$ and γ' is the restriction of γ to $\bigcup_{u \in U'} FA_u$; since D' is a proper induced subdigraph of D, we have that D' has a kernel and Theorem 2.2 implies that D'_0 has a kernel.

Theorem 2.5. Let $t_1 = (D_0, U, A, \gamma)$ be a τ_1 -system such that for every non trivial family $S = (S_u)_{u \in U}$, where S_u is an initial section of A_u , the digraph $D_0 - \bigcup_{u \in U} \{f \in FD_0 | f^* \text{ incides } inS_u\}$ is a KP-digraph. Then $\tau_1(t_1)$ is a KP-digraph (resp: CKI-digraph) if and only if D_0 is a KP-digraph (resp: CKI-digraph).

3. τ_1 -Constructions

In these section we present a method to realize in a simple way some τ_1 -constructions and we obtain a large variety of KP digraphs and CKI-digraphs satisfying the k-Meyniel's condition.

Let D_0 be a multidigraph, $U \subseteq V(D_0), <^p$ be a total order in $\{v(f) = \{u_1, u_2\} \mid f \text{ is an } u_1u_2\text{-arc}\}$, and $<^{u_1u_2}$ be a total order in $\{f \in FD_0 \mid f \text{ is an } u_1u_2\text{-arc}\}$. We will denote by < the total order defined in

$$\bigcup_{u\in U}\left\{(v(f),f)\mid f\in F(Sym\ D_{\scriptscriptstyle 0})\cap F_u^-(D_{\scriptscriptstyle 0})\right\}$$

as follows: (v(f), f) < (v(g), g) if and only if $v(f) <^p v(g)$ or $v(f) = v(g) = \{u_1, u_2\}$ and $f <^{u_1 u_2} g$. And for each $u \in U$ we will denote by $u_-(f) = \{f\}$ when $f \in F(Sym \ D_0) \cap F_u^-(D_0); \ u_-^0 = F(Asym \ D_0) \cap F_u^-(D_0), \ u_+ = F_u^+(D_0),$

$$\Pi_{u} = \left\{ u_{+}, u_{-}^{0}, u_{-}(f) \mid f \in F(Sym \ D_{0}) \cap F_{u}^{-}(D_{0}) \right\}.$$

(clearly Π_u is a τ -partition in u), $A_u^<$ the $u_-^0 u_+$ -directed path defined as follows

$$A_u^{<} = \left(u_{-}^0, u_{-}(f_1), u_{-}(f_2), \dots, u_{-}(f_r), u_{+}\right),$$

where

$$(v(f_1), f_1) < (v(f_2), f_2) < \ldots < (v(f_r), f_r)$$

and

$$\{f_1,\ldots,f_r\}=F\,Sym\ D_0\cap F_u^-D_0$$

Finally we denote by $A^{<} = (A_u^{<})_{u \in U}$.

Theorem 3.1. Let D_0 be a multidigraph which is a quasi KP-digraph and $t_0 = (D_0, U, \mathbf{A}^{<})$ any τ_0 -system defined as at the begining of this section. For any non trivial family $\mathbf{S} = (S_u)_{u \in U}$, where S_u is an initial section of $\mathbf{A}_u^{<}$, $(D_0 - \bigcup_{u \in U} \{f \in FD_0 \mid f^* \text{ incides in } S_u \}) = D_0(\mathbf{S})$ is a KP-digraph.

Proof. Suppose that there exists a non trivial family $S = (S_u)_{u \in U}$, where S_u is an initial section of $A_u^<$, such that $D_0(S)$ is not a KP-digraph and let D_1 be a CKI-digraph which is an induced subdigraph of $D_0(S)$; since $D_0(S)$ is a proper subdigraph of D_0 , we have that D_1 is not an induced subdigraph of D_0 and there exists an uv-arc in $FD_0[V(D_1)] - F(D_1)$ and S_v is not empty, so $v_-^0 \cap FD_1 = \emptyset$. Since D_1 is a CKI-digraph, Theorem 1.4 implies that there exists some wv-arc in $Asym \ D_1$ and $\emptyset = v_-^0 \cap FD_1 = FAsym \ D_0 \cap F_v^-(D_0) \cap FD_1$ implies $wv \in F(Sym \ D_0)$, so there exists $w \in V(D_1)$ such that $\delta_{D_1'}^+(w) \neq 0$, where $D_1' = Asym \ D_1 \cap Sym \ D_0$. Futhermore, if $zv \in F_z^+(D_1')$, then $S_z \neq \emptyset$, $z_-^0 \cap F(D_1) = \emptyset$ and since D_1 is a CKI-digraph, Theorem 1.4 implies $F(Asym \ D_1) \cap F_z^-(D_1') \neq \emptyset$ and then there exists $wz \in F(D_1')$; hence $\delta_{D_1'}^+(w) \neq 0$. We have proved:

- (a) there exists $w \in V(D'_1)$ such that $\delta^+_{D'_1}(w) \neq 0$.
- (b) if $\delta_{D'_{1}}^{+}(z) \neq 0$, then $\delta_{D'_{1}}^{-}(z) \neq 0$.

It follows that D'_1 contains a directed cycle $\mathcal{C} = (w_0, f_0, w_1, f_1, \dots, w_n, f_n, w_0)$ where $\{w_0, \dots, w_n\} \subseteq V(D'_1), \{f_0, \dots, f_n\} \subseteq FD'_1$. Since $<^p$ is a total order in $\{v(f) \mid f \in Sym D_0\}$ and $\mathcal{C} \subseteq D'_1$, it follows that for some $i \in \{0, 1, \dots, n\}, \{w_{i-1}, w_i\} <^p \{w_i, w_{i+1}\}$ (the indices are taken mod n+1). It follows from the definition of $t_1 = (D_0, U, A^<)$ that

 $A_{w_i}^{<}[\{w_{i_-}(g) \mid g \text{ is a } w_{i+1}w_i \text{ -arc}\}]$

is a subpath of the subpath of $A_{w_i}^{\leq}$ between the vertices $w_{i_-}(f_{i-1})$ and w_i^+ and since $f_{i-1} \in F(\mathcal{C}) \subseteq FD'_1$ it follows $w_{i_-}(f_{i-1}) \notin S_{w_i}$ and then $\{w_{i_-}(g) \mid g \text{ is a } w_{i+1}w_i\text{-}\mathrm{arc}\} \cap S_{w_i} = \emptyset$. Since $f_i \in \mathcal{C} \subseteq D'_1$ and

$$\{w_{i_-}(g) \mid g \text{ is a } w_{i+1}w_i \text{-arc}\} \cap S_{w_i} = \emptyset,$$

from \mathcal{C} by identifying

there exists some $w_{i+1}w_i$ -arc in D_0 which is also in $D_0(S)$ and since D_1 is an induced subdigraph of D_0 , it follows that $f_i \in F(Sym \ D_1)$ contradicting $f_i \in F(D'_i).$

A digraph D is said to satisfy the k-Meyniel's condition if each odd directed cycle of D has at least k diagonals and we write D satisfies M(k).

Let D_0 be a digraph, we will denote by $D_0^{(k)}$ the multidigraph obtained from D_0 by adding to each symmetrical arc the multiplicity k.

Lemma 3.1. If D_0 is a digraph such that every odd directed cycle has a symmetrical arc and $t_1 = (D_0^{(k)}, V(D_0), \mathbf{A}^{<}, \gamma)$, then $\tau_1(t_1)$ satisfies M(k).

Proof. Let C be an odd directed cycle contained in $\tau_1(t_1)$; since $\bigcup_{f \in FA_u^<} \gamma_u^f$ is a directed path of even lenght, we have that \mathcal{C}' is the digraph obtained

 $\bigcup_{f\in FA_u^<}\gamma_u^f \text{ with } u \text{ for each } u\in V(D_0); \ \mathcal{C}' \text{ is an odd }$ directed cycle in D_0^k and clearly $\mathcal{C} \cong t_1(\mathcal{C}', V(\mathcal{C}'), \mathbf{A}^</V(\mathcal{C}'), \gamma')$, where γ' is the restriction of γ to $\bigcup_{u \in V(\mathcal{C}')} \bigcup_{f \in FA_u^<} \gamma_u^f$ and Definition 2.3 implies that each pseudodiagonal of \mathcal{C}' is a diagonal of \mathcal{C} .

As a direct consequence of Theorems 3.1, 2.5 and Lemma 3.1 we obtain.

Theorem 3.2. If D_0 is a KP-digraph (resp. CKI-digraph) such that every odd directed cycle has a symmetrical arc and $t_1 = (D_0^{(k)}, V(D_0), \mathbf{A}^{<}, \gamma)$, then $\tau_1(t_1)$ is a KP-digraph (resp. CKI-digraph) which satisfies M(k).

Corollary 3.1. For each natural number k, there exists some KP-digraph (resp. CKI-digraph) D_k which satisfies the k-Meyniel's condition.

Proof. Define the digraph $C = \overrightarrow{C}_n (j_1, \ldots, j_k)$ by $V(C) = \{0, 1, \ldots, n-1\},\$ $F(C) = \{ uv \mid v - u \equiv j_s \pmod{n} \text{ for } s = 1, \dots, k \} \text{ and denote } D_0 = C_n$ $(1, \pm 2, \ldots, \pm r)$ for an even natural number $n \not\equiv 0 \pmod{r+1}$. In [6] it was proved that D_0 is a CKI-digraph; so it follows from Theorems 3.1, 2.3 and Lemma 3.1 that $\tau_1(t_1)$ is a *CKI*-digraph which satisfies M(k).

References

- [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- [2] P. Duchet and H. Meyniel, A note on kernel-critical digraphs, Discrete Math. **33** (1981) 103–105.

- [3] P. Duchet and H. Meyniel, Une generalization du theoreme de Richarson sur l'existence de noyoux dans les graphes orientes, Discrete Math. 43 (1983) 21–27.
- [4] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81–81.
- [5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76.
- [6] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257–265.
- [7] H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181–187.
- [8] H. Jacob, Etude Theorique du Noyau d'un graphe, Thèse, Université Pierre et Marie Curie, Paris VI, 1979.
- [9] V. Neumann-Lara, Seminúcleos de una digráfica, Anales del Instituto de Matemáticas 11 (1971) UNAM.

Received 13 June 1994 Revised 30 April 1996