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Abstract

The domination number of a graph G is the smallest order, γ(G),
of a dominating set for G. A conjecture of V. G. Vizing [5] states that
for every pair of graphs G and H, γ(G H) ≥ γ(G)γ(H), where
G H denotes the Cartesian product of G and H. We show that if
the vertex set of G can be partitioned in a certain way then the above
inequality holds for every graph H. The class of graphs G which have
this type of partitioning includes those whose 2-packing number is no
smaller than γ(G) − 1 as well as the collection of graphs considered
by Barcalkin and German in [1]. A crucial part of the proof depends
on the well-known fact that the domination number of any connected
graph of order at least two is no more than half its order.
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1. Introduction and Terminology
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We consider only finite, simple, undirected graphs. The vertex set of a graph
G will be denoted by V (G) and its edge set by E(G). For a subset D of
V (G), 〈D〉 is the induced subgraph on the vertices of D. The neighborhood

of v ∈ V (G) is N(v) = {x|xv ∈ E(G)} and N(D) = ∪x∈DN(x); N [v] =
N(v)∪{v} is the closed neighborhood of v and N [D] = ∪v∈DN [v]. The set
D is called a dominating set for G if N [D] = V (G). The cardinality of a
smallest dominating set for G is the domination number of G and is denoted
by γ(G). We will refer to any dominating set of G having cardinality γ(G)
as a γ-set of G. C ⊆ V (G) will be called a clique if 〈C〉 is a (not necessarily
maximal) complete graph.

A set I ⊆ V (G) is a 2-packing of G if N [x] ∩ N [y] = ∅ for every pair
x, y ∈ I, x 6= y. P2(G), the 2-packing number of G, is the cardinality of the
largest 2-packing of G. Note that since a dominating set in G must contain
at least one vertex from every closed neighborhood of G, it is immediate
that γ(G) ≥ P2(G).

The Cartesian product, G H, of graphs G and H is the graph with
vertex set V (G)× V (H) and where two vertices are adjacent when they are
equal in one coordinate and adjacent in the other. That is, (u, v) and (x, y)
are adjacent in G H when either u = x and vy ∈ E(H), or ux ∈ E(G)
and v = y.

Let h be any vertex of H. We let Gh represent the induced subgraph
〈{(x, h)|x ∈ V (G)}〉. Note that Gh is isomorphic to G. We refer to this
subgraph as level h of G H. We shall say that level t is a neighboring

level of level h if and only if t and h are neighbors in H. Similarly, Hg for
g ∈ V (G) will denote the subgraph of G H induced by the set of vertices
{(g, y)|y ∈ V (H)}. If S ⊂ V (G), then HS = 〈S × V (H)〉. This subgraph of
G H is isomorphic to 〈S〉 H.

We are interested in the conjecture first suggested by Vizing [5]: for

all graphs G and H, γ(G H) ≥ γ(G)γ(H). We will say that Vizing’s

conjecture is true for a graph G if the above inequality is true for every
graph H.

Suppose that D is any dominating set for G H and (g, h) is any
vertex not in D. Since D must intersect the neighborhood of (g, h), D

must contain either a vertex (g, t) where level t is a neighboring level of
level h or a vertex (s, h) where vertices s and g are adjacent in G.

Our approach will be to partition the vertices of G into γ(G) sets, say
S1, S2, . . . , Sγ(G), and then to show that each HSi

contains at least γ(H)
vertices of any dominating set D of G H, or if some of these induced
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subgraphs have fewer than γ(H) members of D then there must be sufficient
extras in those which do to compensate for the shortage.

The simplest case occurs when one is guaranteed that each HSi
has at

least γ(H) elements of D. For instance, it has been noted by a number of
authors (see [1] and [4]) that if P2(G) = γ(G), then γ(G H) ≥ γ(G)γ(H).
This follows by observing that for each vertex v in a maximum 2-packing of
G there must be sufficient vertices in D to dominate Hv, and these vertices
can only be from HN [v].

For example, if G is the 6-cycle having consecutive vertices a, b, c, d, e, f ,
then to dominate Hb only vertices from Ha∪Hb∪Hc can be used. Similarly,
He is dominated only from Hd ∪ He ∪ Hf . Hence at least 2γ(H) will be
required in any dominating set of C6 H.

The following observation proves useful in working with Vizing’s con-
jecture. It can be used to conclude that Vizing’s conjecture is true for a
given class of graphs after proving it for those graphs in the class which are
edge-maximal with respect to the domination number.

Lemma 1.1. If G is a spanning subgraph of G′ such that γ(G) = γ(G′)
and if Vizing’s conjecture is true for G′, then it is also true for G.

Proof. Let G and G′ be as in the statement of the lemma and let H be
any graph. Since the domination number of a spanning subgraph is always
at least as large as that of the original graph, it follows that γ(G H) ≥
γ(G′ H) ≥ γ(G′)γ(H) = γ(G)γ(H).

Another very useful result is that of Barcalkin and German [1] which is a
more general partitioning condition than the 2-packing one mentioned above.

Theorem 1.2. Suppose G is a spanning subgraph of a graph G′ such that

γ(G) = γ(G′) and such that V (G′) can be partitioned into γ(G′) subsets

each of which induces a clique in G′. Then Vizing’s conjecture is true for G.

To see that the previous case, where G has a 2-packing {v1, v2, . . . , vγ(G)},
is actually a special case of this theorem it suffices to observe that sufficient
edges can be added to make each N [vi] a clique. Any vertices of G not

included in ∪
γ(G)
i=1 N [vi] can be assigned to any of the cliques. The resulting

graph G′ has domination number γ(G). Thus in the C6 example above,
edges ac and df can be added to C6 to form two triangles. However,
this result also handles such diverse cases as Kn Kn (as it partitions into
n cliques) and C7 with vertices (in order) a, b, c, d, e, f, g. Here one can
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produce three cliques (one K3 and two K2’s) by adding the two edges from
a to vertices d and e. In the first example note that the 2-packing number
is much smaller than the domination number. Since in C7 one cannot, for
example, join vertices a and c without lowering the domination number,
this example illustrates the care that must be taken to check if the Barcalkin
and German result applies.
Our intent is to consider graphs G which cannot be partitioned into γ(G)
cliques (nor are they spanning subgraphs of such) and extend the partition
concept to include some of them. For example, the four graphs in Figure 1
are potential candidates.
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2. Illustration of Proof Technique

Before we consider graphs of a more general nature, we will illustrate the
main new argument that we employ on a very small graph. In particular,
consider G = C4 with vertices (in order) a, b, c, d. Although this graph
can be partitioned into γ(G) cliques (for instance, {a, b} and {c, d}), and
so Theorem 1.2 states that Vizing’s conjecture is true for G, we will show
another argument that can be used.

For an arbitrary graph H let D be any dominating set of G H. If Ha

is dominated by D∩Ha, then |D∩Ha| ≥ γ(H). If there are some vertices of
Ha not dominated in this way, then we make a list of these “missing levels”
for Ha. That is, vertex x of H is on the missing level list for Ha if D∩Ha

contains no vertex of the form (a, y) for y ∈ N [x]. Since D dominates
(a, x) it follows that D must contain a vertex from level x in either Hb or
Hd. Similarly, any vertex of Hc not dominated by D ∩ Hc appears on the
missing level list for Hc.

We will now show there are sufficient elements, say m, of D in Hb ∪Hd

so that some set of m vertices could be carefully chosen to dominate the
missing levels in Ha and those in Hc. Consider the members of D ∩ Hd

and project them onto Hb. That is, if (d, i) ∈ D, then this is projected
to (b, i). Consider the set A of vertices in Hb consisting of the original
members of D ∩ Hb as well as the projected elements from D ∩ Hd. In
general the subgraph F of Hb induced by A will consist of components
of order two or more as well as singleton vertices. The effect they had as
far as Ha and Hc were concerned was to dominate (although a given one
may not actually be required) the vertices in the corresponding levels. But
consider any component C of F of order two or more. All of the vertices
of C can be dominated by a γ-set of C, and a γ-set of C will contain no
more than 1

2
|C| vertices. Hence for any such component we could count half

the elements of D in that component towards Ha and half towards Hc.

They would be sufficient to dominate all missing levels (in Ha and Hc) that
correspond to the vertices in C. Of course, there may be fewer missing levels
than there are vertices in C, but the worst case is that they are all missing.

Now consider a component of F of order one consisting of the single
vertex (b, i). This means that no neighbor of (b, i) is in Hb ∩ D and no
neighbor of (d, i) is in Hd ∩ D. If i appears on the missing level list of
only one of Ha or Hc, then we can count (b, i) there. On the other hand,
if i appears on the missing level list at both Ha and Hc, then since D
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contains no vertices from neighboring levels of level i in Hb ∪ Hd, it follows
that D contains both (b, i) and (d, i) since both of these vertices must be
dominated by D. Hence we have a “duplicate” and can count one of these
for Ha and the other for Hc. Note that since these arose from an isolated
vertex component there is no danger of counting one of these vertices from
D in two different ways.

We have shown that there are sufficient extra vertices of D in Hb ∪ Hd

to be “earmarked” for Ha and Hc to dominate any missing levels. Hence
D must contain at least 2γ(H) vertices and so Vizing’s conjecture is true
for G. It should be noted that one cannot consider the missing levels one at
a time and simply project the corresponding vertices from D∩Hb or D∩Hd

to either Ha or Hc where needed, because in so doing it is possible to leave
portions of the graphs Hb and Hd not yet considered no longer dominated.

As another illustration of this technique consider G = G4 as shown in
Figure 1. Let H be any graph and consider any dominating set D of G H.

If D ∩ Ha does not dominate Ha, then make a list of the missing levels for
Ha. Similarly, make a missing level list for any vertices of Hb that are not
dominated by D∩Hb. For any fixed vertex, say t1, of the triangle project all
the elements of D∩(Ht2∪Ht3) onto Ht1 . Let W represent the set of vertices
in Ht1 which were already in D together with those which are images of
the projections. If there are any vertices in Ht1 which are not dominated by
W , they form a missing level list for the triangle.

First note that if vertex h is on the missing level list of the triangle, then
it must be the case that (x, h), (y, h) and (z, h) are all in D in order to
dominate the “triangle part” of level h. Hence we will be able to count one
member of D for missing level h in the triangle and still have two members
of D for Ha and Hb if required.

Now project the vertices in D ∩ (Hy ∪ Hz) onto Hx. Let F denote the
subgraph of Hx induced by the resulting set A of vertices from Hx ∩ D

together with the projection images. As in the previous example, the effect
on Ha and Hb of some vertex in D ∩ (Hx ∪ Hy ∪ Hz) is to dominate the
corresponding vertices in the same level and not in any neighboring levels.
Any component of F of order at least two can be dominated by a subset of
cardinality at most half the order of the component. Thus we can compensate
for any missing level in either Ha or Hb which corresponded to a vertex in
such a component. If the triangle were also missing that level, then as noted
above we have duplicates at that level.

Suppose {(x, h)} is a component of F . If only one of Ha or Hb is
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missing level h, then we can count the vertex (x, h) where it is missing.
In the event that h is on the missing level list for both Ha and Hb, then
either there are at least two of (x, h), (y, h) and (z, h) in D (and hence
we can count one for each of Ha and Hb), or only one of these is in D.

In this case there must be at least two of (t1, h), (t2, h) and (t3, h) in D

to dominate {(x, h), (y, h), (z, h)}. Hence again we have a duplicate in the
triangle at that level along with the single member from (x, h), (y, h) and
(z, h) for Ha and Hb. This counting gives |D| ≥ 3γ(H) = γ(G4)γ(H).
Thus Vizing’s conjecture is true for G4.

3. The Main Theorem

Consider a graph G with γ(G) = n = k + t + m + 1 and such that V (G)
can be partitioned into S ∪ SC ∪ BC ∪ C, where S = S1 ∪ S2 ∪ . . . ∪
Sk, BC = B1 ∪ B2 ∪ . . . ∪ Bt, and C = C1 ∪ C2 ∪ . . . ∪ Cm. Each of
SC,B1, . . . , Bt, C1, . . . , Cm induces a clique. Every vertex of SC (special
clique) has at least one neighbor outside SC whereas each of B1, . . . , Bt (the
buffer cliques), say Bi, has at least one vertex, say bi, which has no neighbors
outside Bi. Each Si ∈ {S1, S2, . . . , Sk} is star-like in that it contains a star
centered at a vertex vi which is adjacent to each vertex in Ti = Si − {vi}.
The vertex vi has no neighbors besides those in Ti. Although other pairs of
vertices in Ti may be adjacent (and hence Si does not necessarily induce
a star), Si does not induce a clique nor can more edges be added in 〈Si〉
without lowering the domination number of G. Furthermore, there are no
edges between vertices in S and vertices in C. For ease of reference we will
say such a graph G is of Type X .

It should be noted that a graph of Type X need not have a clique having
the properties of SC, and any of t, m or k is allowed to be 0. However,
if such an SC is not in G, then γ(G) = n = k + t + m. Also, if SC is
not present and BC is empty, but S as well as C are not empty, then
the graph is disconnected. SC can not be the only one of these which is
nonempty since by definition its vertices must have neighbors outside SC.

As illustrations of graphs of Type X see G1, G2 and G3 in Figure 1.

Theorem 3.1. Let G be a graph of Type X . Vizing’s conjecture is true for

G.

Proof. Let H be an arbitrary graph and suppose D is any dominating
set for G H. For each set, an Si or Bi, in the partition of S ∪ BC, there
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are sufficient elements of D to entirely dominate a copy of H. In particular,
consider Sj ∈ S and the copy of H represented by Hvj

. Any vertex (vj, h)
of Hvj

not dominated by D ∩ Hvj
must be dominated by a neighboring

vertex in level h and hence by some vertex from D ∩ HTj
. In either case,

all of Hvj
is dominated by D ∩ HSj

. Similarly, for each buffer clique Bj,
there must be sufficient vertices in D ∩HBj

to entirely dominate Hbj
since

bj has no neighbors in V (G) − Bj.

However, HSC and HCj
may not be entirely dominated by vertices of

D ∩HSC and D ∩HCj
, respectively. We must show that there are sufficient

elements of D to yield at least γ(H) for each of the sets in {SC,C1, . . . , Cm}
as well as {S1, . . . , Sk, B1, . . . , Bt}.

To obtain a measure of the shortfall at each clique, say K, in
{SC,C1, . . . , Cm}, select one vertex w ∈ K and project all the elements
of D∩HK onto Hw. That is, a vertex (u, h) ∈ (D∩HK)−Hw is projected
onto the vertex (w, h). If all of Hw is dominated by the elements of D orig-
inally in Hw or those projected onto Hw, then there is no shortfall as we
must already have at least γ(H) elements of D in HK . On the other hand,
if certain vertices (levels) of Hw are not so dominated, form a missing level
list for Hw consisting of these. Observe that if vertex h is in the missing
level list at Hw this means that no vertex of HK in level h is in D nor was
any vertex from a neighboring level to level h in D∩HK . This implies that
all vertices from level h in HK must be dominated by neighbors in level h

in D corresponding to other sets in the partition of V (G).
For example, let G = G1 in Figure 1 and H = P5 with vertices labeled

1,2,3,4,5 in order. Suppose the only vertex in Hs1
∩D is (s1, 1), and (s2, 1)

and (s2, 5) are the only members of Hs2
∩ D. When projected onto Hs1

vertex 3 would be a missing level. Hence either (t1, 3) or (x, 3) (or both)
must belong to D to dominate (s1, 3). Similarly, (t2, 3) or (y, 3) must
belong to D to dominate (s2, 3) ∈ Hs2

.

Note that there may well be duplicates at certain levels when the project-
ing occurs as is the case with level 1 in Hs1

. We note the extra occurrences
in a particular clique of a level h vertex in D (i.e., all but one) may be
required for counting towards any shortages at that level in other cliques.
For instance in Figure 1, if both (x, 3) and (y, 3) are in D, one of these is
sufficient for Hb1 , and the other could be counted towards the missing level
3 in SC.

We must modify this argument for the sets T1, T2, . . . , Tk. First observe
that because of the structure of G, (u, h) ∈ D ∩ HTj

is only needed to
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dominate vertex (vj, h) in Hvj
(not any vertex in a neighboring level in

Hvj
). The vertices of D ∩ HTj

may help dominate a missing level of HSC

as well. Although they may dominate vertices in some HTr
or HBp

, both
HSr

and HBp
have sufficient members of D to dominate a copy of H and

do not require external assistance in the count. Now for each d, 1 ≤ d ≤ k,
choose a vertex e ∈ Td and project all members of D ∩ Td onto He. The
projected vertices will induce a subgraph of He consisting of isolated vertices
or of components of order two or more.

Let F be one of these components of order at least two. For (e, f) ∈ F

the corresponding vertex (vd, f) ∈ Hvd
may need to be dominated. Thus it

is possible that γ(F ) vertices from F must be available to dominate Hvd
.

But γ(F ) ≤ 1
2
|F | and hence we could count γ(F ) for Hvd

and γ(F ) for
HSC , even though these vertices may not be needed at HSC . All components
of order two or more could be treated similarly. The singleton components
will be treated separately.

Let us now proceed to consider G H. For each clique Q in
{SC,C1, C2, . . . , Cm} fix a vertex a ∈ Q and project D ∩ HQ onto Ha.

Create a missing level list for each such Q. As discussed before, in the case
of each member of {S1, . . . , Sk, B1, . . . , Bt} there are sufficient members of
D to dominate a copy of H, and hence there are no missing levels.

Now consider each vertex of H which is a missing level in at least one
clique. Suppose a total of r cliques other than SC are missing level h. Then
every vertex in level h corresponding to a vertex from one of these r cliques
must be dominated by a member of D (in level h) corresponding to a vertex
from another clique, possibly in SC ∪ BC. Suppose there are a total of s

such cliques. That is, there are s cliques which have at least one element of
D at level h which is adjacent to at least one vertex in the set of r cliques
missing level h. Call the set of vertices at level h in D from these s cliques
Dr. The claim is that |Dr| ≥ r + s, since in Gh the set Dr dominates the
s cliques it belongs to as well as the set of r cliques missing level h. For
if there were fewer than r + s vertices in Dr, then we can extend Dr to
a dominating set of Gh by including (v1, h), (v2, h), . . . , (vk, h) and one per
clique at level h for the cliques not in the r + s already considered. This
resulting dominating set has cardinality less than n which is a contradiction.

In case SC is missing level h but level h of SC is entirely dominated
from neighboring cliques (as would be possible if G = G1 in Figure 1),
the same argument applies. If SC is missing level h but level h of SC

is not entirely dominated by vertices of D in neighboring cliques, then we
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must consider elements of D in T1 ∪ T2 ∪ . . .∪Tk. (For example, this would
necessarily be the case if G = G3 in Figure 1 since two of the vertices of
SC are not adjacent to vertices in any of the cliques.)

For each j, 1 ≤ j ≤ k, choose wj ∈ Tj and project D ∩ HTj
onto

Hwj
. The projected vertices will, for each Tj, induce a subgraph Fj of Hwj

consisting of components of order two or more and singleton vertices. There
are two possibilities:

Case 1. SC is missing level h and for every i, 1 ≤ i ≤ k, Ti has either
no elements of D or one element of D in level h. Furthermore, for each Ti

with exactly one element of D at level h, no vertex from a neighboring level
to level h in HTi

belongs to D (hence, when projected, singletons would
result). In addition, for each such Ti, in the corresponding Hvi

, neither
(vi, h) nor any vertex from a neighboring level to level h belongs to D. Let
S ′ denote the collection of all Si corresponding to such a Ti.

In this case suppose a total of r1 cliques besides SC are missing level h.

These r1 cliques, as well as SC and the set of, say r2, members of S ′ must
be dominated at level h by the r2 members of D in S ′ as well as vertices
of D which are neighbors in level h but in other cliques. Suppose there are
a total of s such cliques. That is, there are s cliques which have at least
one element of D in level h which is adjacent to at least one vertex in SC,

in a member of S ′, or in one of the r1 cliques missing level h. But if there
were fewer than r1 + r2 + s + 1 such elements of D, then all of Gh could
be dominated by enlarging this set to include vj for each Sj 6∈ S ′ and one
vertex from each of the cliques not counted above. This is a contradiction
since the resulting dominating set for Gh would have fewer than n vertices.

Case 2. SC is missing level h and there is at least one j, 1 ≤ j ≤ k,

such that Tj has either

(2a) two or more elements of D in level h (and hence there will be dupli-
cates when projected), or

(2b) a level h member of D as well as a neighboring level member of D

(and hence, when projected, a component of order two or more will
result), or

(2c) a level h vertex in D, and D ∩ Hvj
has either a vertex in level h or

a vertex from a neighboring level of level h.

First, if any Fj contains a level h vertex in a component L of order two
or more, then L can be dominated in γ(L) ≤ 1

2
|L| elements, and so γ(L)

of the vertices in L could be counted towards dominating Hvj
and γ(L)
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towards dominating those missing levels of SC. If no Fi contains the level
h vertex in a component of order at least two, then either (2a) holds which
means there is a duplicate level h vertex in D available for SC, or (2c)
holds, in which case Hvj

does not require the level h vertex in D ∩ Tj and
so it can be counted for dominating SC.

Hence any missing level h of SC can be handled by either Case 1 or
Case 2. We have shown that |D| ≥ nγ(H) and so Vizing’s conjecture is true
for G.

The following more general result is an immediate corollary of Theorem 3.1
and Lemma 1.1.

Corollary 3.2. If G is a graph of Type X and F is a spanning subgraph

of G such that γ(F ) = γ(G), then Vizing’s conjecture is true for F.

We also note that the result of Barcalkin and German, Theorem 1.2, is a
special case of this theorem.

Corollary 3.3. If G is a graph as in Theorem 3.1 except that the set S is

empty, then Vizing’s conjecture is true for G.

As mentioned in Section 1, if γ(G) = P2(G) then Vizing’s conjecture is true
for G. The following corollary of Theorem 3.1 shows that this can now be
extended.

Corollary 3.4. If G is a graph and γ(G) = P2(G) + 1, then Vizing’s

conjecture is true for G.

Proof. Let P2(G) = k and γ(G) = k + 1. Suppose {v1, v2, . . . , vk} is a
maximum 2-packing of G. For each i, 1 ≤ i ≤ k, let Si be the subgraph
of G induced by N [vi] and let W = V (G) − ∪1≤j≤kN [vi]. Add edges if
necessary to make W into a clique SC, and if possible, add edges in each
N [vi] as long as the domination number of the resulting graph is not smaller
than γ(G). It is clear that the resulting graph G′ has domination number
k + 1 and satisfies the hypothesis of Theorem 3.1. The fact that Vizing’s
conjecture is true for G now follows from Corollary 3.2.

Note that each of G2 and G3 in Figure 1 satisfies the hypothesis of Theorem
3.1 but is not covered by Theorem 1.2 or Corollary 3.4.
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5–8.

[2] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs
(Prindle, Weber & Schmidt International Series, 1979).

[3] B.L. Hartnell and D.F. Rall, On Vizing’s conjecture, Congr. Numer. 82

(1991) 87–96.

[4] M.S. Jacobson and L.F. Kinch, On the domination of the products of graphs

II: trees, J. Graph Theory 10 (1986) 97–106.

[5] V.G. Vizing, The Cartesian product of graphs, Vyc. Sis. 9 (1963) 30–43.

Received 25 May 1995

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

