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Abstract

A hereditary property R of graphs is said to be reducible if there
exist hereditary properties P1,P2 such that G ∈ R if and only if the
set of vertices of G can be partitioned into V (G) = V1 ∪ V2 so that
〈V1〉 ∈ P1 and 〈V2〉 ∈ P2. The problem of the factorization of reducible
properties into irreducible factors is investigated.
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1. Introduction

We consider finite undirected graphs without loops and multiple edges. In
general, we use the notation and terminology of [2].

Let I is the set of all mutually non-isomorphic graphs. If P is a
nonempty subset of I, then P also denotes the property that a graph G
is a member of P. A property P is said to be hereditary if G ∈ P and
H ⊆ G implies H ∈ P and P is called additive if for each graph G whose all
components have property P it follows G ∈ P, too (see [1]).

Many known properties of graphs are both hereditary and additive. Let
us mention some of them:

O = {G ∈ I|G is totally disconnected},

O2 = {G ∈ I|G is bipartite},

Ik = {G ∈ I|G does not containKk+2 as a subgraph}.



196 P. Mihók and R. Vasky

We shall denote the set of all additive hereditary properties by La.
For any property P ∈ La, P 6= I, there is a number c(P) called com-

pleteness of P such that Kc(P)+1 ∈ P but Kc(P)+2 6∈ P. For given non-
negative i, by La

i we denote the set of all additive hereditary properties of
completeness i.

A hereditary property P can be uniquely determined by the set of min-
imal forbidden graphs which can be defined as follows :

F (P) = {F ∈ I|F /∈ P but each proper subgraph of F belongs to P}.

It is easy to see that La
0 = {O} and F (O) = {K2}. The structure of the

set La of the additive hereditary properties was investigated in [1] and [4],
where it is proved that the set La, partially ordered by set inclusion, forms
a complete distributive lattice.

Let P1,P2, . . . ,Pn are any properties of graphs. A vertex (P1,P2, . . . ,
Pn)-partition of a graph G is a partition (V1, V2, . . . , Vn) of V (G) such that
for each i = 1, 2, . . . , n the induced subgraph 〈Vi〉G has the property Pi.
A property R = P1 ◦ P2 ◦ . . . ◦ Pn is defined as a set of all graphs having a
vertex (P1,P2, . . . ,Pn)-partition.

A property P ∈ La is called reducible if there exist P1 ∈ La, P2 ∈ La

such that P = P1 ◦ P2. Otherwise P is called irreducible.
Let us start with some easy observations. Lemma 1 follows immediately

from the definitions.

Lemma 1. If P = P1 ◦ P2, then c(P) = c(P1) + c(P2) + 1.

Lemma 2. Let P1,P2 are hereditary properties of graphs. If P2 6⊆ P1, then

there exists a graph G ∈ P2 such that G ∈ F (P1).

Proof. It is obvious that P2\P1 is nonempty, because of P2 6⊆ P1. If
G ∈ P2\P1, then either G ∈ F (P1) or G possesses H ∈ F (P1) as a subgraph.
Since P2 is hereditary, it follows that H ∈ P2 and the proof is complete.

In connection with the Four Colour Theorem, different types of partitions
of the vertices of planar graphs have been investigated. The problem of the
determination of the ”minimal reducible bounds for planar graphs” (see [2],
p.266, [5]) is closely related to the characterization of the structure of the
reducible properties of completeness 3 in the lattice La.

The basic and natural question whether the factorization of any re-
ducible property R ∈ La into irreducible factors is unique seems to be
extremaly difficult (see [2], p.266).
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The aim of this paper is to prove that the factorization of any reducible
property R ∈ La of completeness c(R) ≤ 3 into irreducible factors is unique.
We shall use the following result of [3].

Theorem 1. Let P is an additive hereditary property with c(P) ≤ 1. Let

P1,P2 are any additive hereditary properties. If P ◦ P1 = P ◦ P2, then

P1 = P2.

2. Main Results

Theorem 2. A property P ∈ La with c(P) = 1 is reducible if and only if

P = O2 (i.e., P is the set of all bipartite graphs).

Proof. The proof follows immediately from Lemma 1, since La
0 = {O}.

Theorem 3. A factorization of each reducible property P ∈ La
2 into irre-

ducible factors is unique, apart from the order of the factors.

Proof. Let P be any reducible property, P ∈ La
2. Thus there exist P1 ∈

La,P2 ∈ La such that P = P1 ◦ P2. By Lemma 1 either P1 = O, P2 ∈ La
1

or P1 ∈ La
1, P2 = O. Suppose, without loss of generality, P1 = O and

P2 ∈ La
1. If there exists a property P3, P3 6= P2, such that O◦P3 = P, then

O ◦ P3 = O ◦ P2 and by Theorem 1 we obtain P3 = P2, a contradiction.

Two cases can occur now:

(1) P2 is irreducible and then O ◦ P2 is the unique factorization of P
into irreducible factors.

(2) P2 is reducible. By Theorem 2 P2 = O2, which implies that O◦O◦O
is the unique factorization of the property P into irreducible factors.

Theorem 4. A factorization of any reducible additive hereditary property

P of completeness 3 into irreducible factors is unique, apart from the order

of the factors.

3. The Proof of the Main Result

The proof of Theorem 4 is based on the following Lemmas.

Lemma 3. Let P1,P2,P3,P4 be the additive hereditary properties all of

completeness 1. If for every i ∈ {1, 2} and j ∈ {3, 4} Pi 6= Pj, then P1◦P2 6=
P3 ◦ P4.
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Proof. Because of transitivity of set inclusion there exists i ∈ {1, 2, 3, 4}
such that for every j ∈ {1, 2, 3, 4}, j 6= i, Pj 6⊂ Pi. Without loss of generality,
we can suppose that i = 3. The facts that P1 6= P3 and P2 6= P3 imply that
both

P1 6⊆ P3 and P2 6⊆ P3.(1)

Let us suppose, on the contrary, that P1 ◦ P2 = P3 ◦ P4. From (1) and
Lemma 2 it follows that there exist graphs G

′

1, G
′

2 such that

G
′

1 ∈ P1 and G
′

1 6∈ P3,(2)

G
′

2 ∈ P2 and G
′

2 6∈ P3.(3)

Let we state n = max{|V (G
′

1)|, |V (G
′

2)|} and let the graphs G1 and G2

consist of n disjoint copies of G
′

1 and G
′

2, respectively. Let

G = G1 + G2.(4)

Let us denote V1 = V (G1), V2 = V (G2). It is obvious that (V1, V2) is a
vertex (P1,P2)-partition of G. If the graph G ∈ P3 ◦ P4, then there exists
a vertex (P3,P4)-partition of G, say (U1, U2). Since for every i ∈ {1, 2}
G

′

i 6∈ P3, then G
′

1 cannot be a subgraph of 〈V1 ∩ U1〉G and G
′

2 cannot be
a subgraph of 〈V2 ∩ U1〉G. Moreover, as E(G

′

1) 6= ∅ then G
′

1 cannot be a
subgraph of 〈V1 ∩ U2〉G, otherwise necessarilly V2 ∩ U2 = ∅ what implies
that G

′

2 ⊆ 〈V2 ∩ U1〉G, a contradiction. By the similar reason G
′

2 cannot
be a subgraph of 〈V2 ∩ U2〉G. These imply, according to the number of
components of G

′

1 and G
′

2 in the graphs G1 and G2, respectively, that

|Vi ∩ Uj | ≥ n, for every i, j ∈ {1, 2}.(5)

Two cases can appear.
Case 1. Both graphs G

′

1 and G
′

2 are bipartite.
Thus, according to the choice of n, we have

G
′

1 ⊆ Kn,n ⊆ 〈U1〉G,

G
′

2 ⊆ Kn,n ⊆ 〈U2〉G,

this contradicts our assumption 〈U1〉G ∈ P3 and 〈U2〉G ∈ P4.
Case 2. At least one of the graphs G

′

1 and G
′

2 is not bipartite.
Suppose, without loss of generality, that G

′

1 is not bipartite. Then necessar-
ily either E(〈V1 ∩ U1〉G) 6= ∅ or E(〈V1 ∩ U2〉G) 6= ∅. In accordance with (5)
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these facts imply that either K3 ⊆ 〈U1〉G or K3 ⊆ 〈U2〉G, which contradicts
our assumption 〈U1〉G ∈ P3 and 〈U2〉G ∈ P4.

Since there exists no vertex (P3,P4)-partition of G, thus G 6∈ P3 ◦ P4.
Because of G ∈ P1.P2, the proof is complete.

The proof of the following simple but helpful Lemma is trivial and thus we
omit it.

Lemma 4. Let G1, G2 are two arbitrary nonbipartite graphs. Let G =
G1 + G2 be the join of G1 and G2. Then for every O-independent subset S

of a vertex set V (G), the graph K4 ⊆ G-S.

Lemma 5. Let P be any reducible additive hereditary property of complete-

ness 3. Let P1 and P2 be the irreducible additive hereditary properties both

of completeness 1. If P = P1 ◦ P2 then there exists no additive hereditary

property P
′

, c(P
′

) = 2, such that P = O ◦ P
′

.

Proof. Let us suppose that P1,P2 are the irreducible additive hereditary
properties of completeness 1. Three cases can occur. We shall prove the
Lemma for every case separately.

Case 1. P1 ⊂ O2 and P2 ⊂ O2.
In this case there exist the graphs Kp,p and Kq,q such that Kp,p 6∈ P1 and
Kq,q 6∈ P2. Let us assume, on the contrary, that there exists an additive
hereditary property P

′

of completeness 2 such that P1 ◦ P2 = O ◦P
′

. Then
each graph G ∈ O ◦ P

′

must belong to P1 ◦ P2, too. Let us take the graph
G as follows:

G = Dn +
n⋃

i=1

K3,

where Dn is a totally disconnected graph of order n = max{p, q}. It is
easy to see that G ∈ O ◦ P

′

for every P
′

∈ La
2. We must only realize

that K3 ∈ P
′

whenever c(P
′

) = 2. Then (V1, V2), if V1 = V (Dn) and
V2 = V (∪n

i=1K3), is a vertex (O,P
′

)-partition of G. Now we shall prove
that G 6∈ P1 ◦ P2. Let us assume, on the contrary, that G has (P1,P2)-
partition of a vertex set V (G), denote it (U1, U2). It is obvious that the
sets of vertices of each copy of K3 must be partitioned into two nonempty
subsets. Then |U1 ∩ V2| ≥ n and |U2 ∩ V2| ≥ n, too. Moreover, as K3 is not
bipartite, then either E(〈U1 ∩ V2〉G) or E(〈U2 ∩ V2〉G) is nonempty. This
implies that then necessarily either U1 ∩ V1 = ∅ or U2 ∩ V2 = ∅, respectively
(otherwise K3 ⊆ 〈U1 ∩ V2〉G or K3 ⊆ 〈U2 ∩ V2〉G). Then either Kn,n ⊆ 〈U1〉G
or Kn,n ⊆ 〈U2〉G, respectively, but as it was stated before, neither Kn,n 6∈ P1,
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nor Kn,n 6∈ P2. This is a contradiction to the assumption that 〈U1〉G ∈ P1

and 〈U2〉G ∈ P2.

So we found the graph G which belongs to each additive hereditary
property O ◦ P

′

, P
′

∈ La
2, but G 6∈ P1 ◦ P2. This refutes our assumption

about the existence of such a property P
′

∈ La
2 that P1 ◦ P2 = O ◦ P

′

.

Case 2. P1 6⊆ O2 and P2 6⊆ O2.

If both P1 6⊆ O2 and P2 6⊆ O2 then there exist non bipartite graphs G1 ∈ P1,
G2 ∈ P2. Let us construct the graph G

G = G1 + G2.

Then by Lemma 4, for every partition (V1, V2) of a vertex set V (G) such
that 〈V1〉G ∈ O, the graph K4 ⊆ 〈V2〉G. This implies that there exists no
additive hereditary property P

′

, c(P
′

) = 2 and P1 ◦ P2 = O ◦ P
′

holds.

Case 3. Either (P1 ⊂ O2 and P2 6⊆ O2) or (P1 6⊆ O2 and P2 ⊂ O2).

Let us assume that P1 ⊂ O2 and P2 6⊆ O2. In case P2 ⊂ O2 and P1 6⊆ O2

the proof goes in analogical way.

If P1 ⊂ O2, then there exists a natural number m such that Km,m 6∈ P1.
Let us define

n = min{m ∈ N |Km,m 6∈ P1} − 1.

Let G2 be the graph with property P2 such that G2 is not bipartite. Now
we define the graph G∗ as follows:

G∗ = Kn,n + G2.

If we denote W1 = V (Kn,n) and W2 = V (G2), then it is easy to see that
(W1, W2) is a vertex (P1,P2)-partition of G∗. Let us suppose, on the con-
trary, that there exists a property P

′

∈ La
2 such that P1 ◦ P2 = O ◦ P

′

holds. As P1 ◦ P2 = O ◦ P
′

and G∗ ∈ P1 ◦ P2, then G∗ ∈ O ◦ P
′

. This im-
plies that there exists O-independent subset S of a vertex set V (G∗) so that
G∗-S ∈ P

′

. Because of K4 6∈ P
′

the vertex set S has to be a subset of V (Kn,n)
such that Kn,n-S ∈ O. Thus |S| = n and |V (Kn,n-S)| = n. This implies

Dn + G2 ∈ P
′

.

We showed, supposing the existence of P
′

∈ La
2: P1 ◦ P2 = O ◦ P

′

, that the
graph Dn + G2 has a property P

′

.

Let us define the graphs G3, G4, G5 and G as follows :
G3 = Dn + G2, G4 = Dn+1, G5 = G3 ∪ G3, G = G4 + G5.
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As O and P
′

are both additive hereditary properties, then G4 ∈ O and
G5 ∈ P

′

. Further, it is obvious that the graph G ∈ O ◦ P
′

and then it has
a vertex (O,P

′

)-partition, say (V1, V2). Let V1 = V (G4) and V2 = V (G5).
We shall prove that G 6∈ P1 ◦ P2. Let us suppose, on the contrary, that G ∈
P1 ◦P2. Then there exists some vertex (P1,P2)-partition of G. Let (U1, U2)
be the vertex partition mentioned above. As graph G5 is not bipartite it
follows immediately that either 〈V2 ∩ U1〉G 6∈ O or 〈V2 ∩ U2〉G 6∈ O. We will
distinguish the following two subcases.

Subcase 3.1. 〈V2 ∩ U2〉G 6∈ O.
Then the condition V1 ⊆ U1 has to be fulfilled. Because of K3 6∈ P1, it
is obvious that V2 ∩ U1 has to be an independent set of vertices. As also
K3 6∈ P2, we are forced to move just all the vertices of the subgraph Dn of
each copy of the graph G3 in the graph G5 into the set V2 ∩ U1 (otherwise
K3 ⊆ 〈V2 ∩ U2〉G). This implies that

Kn+1,n+1 ⊆ 〈U1〉G

which is a contradiction because of Kn+1,n+1 6∈ P1.
Subcase 3.2. 〈V2 ∩ U1〉G 6∈ O.

Then the condition V1 ⊆ U2 must be fulfilled. By an easy observation we
can see that all the vertices of the subgraphs Dn of each copy of G3 in G5

must belong to the set V2 ∩ U2 (otherwise K3 ⊆ 〈V2 ∩ U1〉G). So the thing
is completed because the graph

G2 ⊆ 〈U1〉G

which contradicts our supposition 〈U1〉G ∈ P1.
We showed that the graph G ∈ O ◦ P

′

and G 6∈ P1 ◦ P2. This fact
contradicts our assumption that there exists P

′

∈ La
2 in such a way that the

equation P1 ◦ P2 = O ◦ P
′

holds.
As there are no more possibilities for existence of the properties P1 and

P2, the proof is complete.

Lemma 6. Let P
′

be an irreducible additive hereditary property, c(P
′

) = 2.
Then there exist no additive hereditary properties P1 and P2, both of com-

pleteness 1, such that O ◦ P
′

= P1 ◦ P2.

Proof. Let P
′

∈ La
2 be an arbitrary irreducible property. Let us suppose,

on the contrary, that there exist additive hereditary properties P1 ∈ La
1,

P2 ∈ La
1 such that O ◦ P

′

= P1 ◦ P2. There are two possibilities for the
existence of the above mentioned properties P1 and P2.
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Case 1. Both P1 and P2 are irreducible.
By Lemma 5 there exists no additive hereditary property P∗ ∈ La

2 such that
P1 ◦ P2 = O ◦ P∗. This fact contradicts our assumption O ◦ P

′

= P1 ◦ P2.
Case 2. Either P1 or P2 is reducible.

We can suppose, without loss of generality, that P1 is reducible. By Theo-
rem 2 we have that P1 = O ◦ O. Thus

O ◦ O ◦ P2 = O ◦ P
′

and by cancellation of O (see [3]) we obtain

P
′

= O ◦ P2

which is a contradiction to our assumption that P
′

is irreducible.

The Proof of Theorem 4. Let P be any reducible property, P ∈ La
3,

so that P = P1 ◦ P2. Then from Lemma 1 either c(P1) = c(P2) = 1 or
P1 = O and c(P2) = 2. We shall distinguish three cases.

Case 1. Both P1 and P2 are irreducible.
Then the uniqueness of a factorization P1 ◦ P2 of P into irreducible fac-
tors follows by Lemmas 3, 5 and 6 using the cancellation law according to
Theorem 1.

Case 2. Both P1 and P2 are reducible.
Then by Theorem 2, P1 = P2 = O2 and P = O◦O◦O◦O. This factorization
is unique by Lemmas 3, 5, 6 and by Theorem 1.

Case 3. Either P1 or P2 is reducible. Without loss of generality, let P1

be a reducible property and P2 be an irreducible property.
(a) If c(P1) = 1, then P1 = O2 and P = O ◦ O ◦ P2 is a unique

factorization of P into irreducible factors.
(b) If c(P1) = 2, then there exists a property P

′

such that P1 = O ◦ P
′

and P2 = O. Thus, according to whether P
′

is a reducible or an irreducible
property, either P = O◦O◦O◦O or P = O◦O◦P

′

is a unique factorization
of P into irreducible factors.
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