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Abstract

We prove: (1) that chP(G)−χP(G) can be arbitrarily large, where
chP(G) and χP(G) are P-choice and P-chromatic numbers, respec-
tively, (2) the (P, L)-colouring version of Brooks’ and Gallai’s theo-
rems.
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1. Introduction and Notation

We consider finite undirected graphs without loops and multiple edges. The
vertex set of a graph G is denoted by V(G) and the edge set by E(G). The
notation H ⊆ G means that H is a subgraph of G. The vertex induced (we
will say briefly: induced) subgraph H of G is denoted by H ≤G. We say that
G contains H whenever G contains a subgraph isomorphic to H. In general,
we follow the notation and terminology of [5].
Let I denote the set of all mutually nonisomorphic graphs. If P is a
nonempty subset of I, then P will also denote the property that a graph is
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a member of the set P. We shall use the terms set of graphs and property

of graphs interchangeably.

A property P of graphs is said to be induced hereditary (shortly: hereditary)
if whenever G ∈ P and H is a vertex induced subgraph of G, then also H ∈ P.
For convenience, the empty set ∅ will be regarded as the set inducing the
subgraph with any property P.

A property P is additive, if for each graph G all of whose components
have the property P it follows that G ∈ P. Let us denote by M and Ma the
set of all hereditary and additive hereditary properties, respectively. Any
hereditary property P of graphs is uniquely determined by the set C(P) of
all forbidden subgraphs defined by

C(P) = {H ∈ I : H 6∈ P but (H − v) ∈ P for any v ∈ V (H)}.

It is easy to prove that a property P ∈ M is additive if and only if all
forbidden subgraphs H ∈ C(P) are connected.

A hereditary property P ∈ M is said to be nontrivial if P 6= I. For a
nontrivial property P ∈ M there exists a number c(P) called the completness

of P defined as sup{k : Kk+1 ∈ P}, and c(P) = ∞ if for every k, Kk+2 ∈ P.
Let δ(P) = min{δ(H) : H ∈ C(P)}.

Let us denote by O = {G : G ∈ I, E(G) = ∅}. For this property we have
C(O) = {K2} and δ(O) = 1.

A P-partition (colouring) of a graph G is a partition (V1, . . . , Vn) of V(G)
such that the subgraph < Vi > induced by the set Vi has property P for
each i = 1, . . .,n. If (V1, . . . , Vn) is a P-partition of a graph G, then the
corresponding vertex colouring f is defined by f(v) = i whenever v ∈ Vi, for
i = 1, . . .,n. The smallest integer n for which G has P-partition is called the
P-chromatic (or P-vertex-partition) number of G and is denoted by χP(G).
The O-chromatic number is the ordinary chromatic number. See [1] for a
survey and more details.

Let G be a graph and let L(v) be a list of colours (as above, positive integers)
prescribed for the vertex v, and P ∈ M. A (P, L)-colouring is a graph P-
colouring f(v) with the additional requirement that for all v ∈ V (G), f(v) ∈
L(v). If G admits a (P, L)-colouring, then G is said to be (P, L)-colourable.

The graph G is (k,P)-choosable if it is (P, L)-colourable for every list L of
G satisfying |L(v) |= k for every v ∈ V (G). The P-choice number chP(G)
is the smallest natural number k such that G is (k,P)-choosable.
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Vizing [6] and Erdös, Rubin and Taylor [3] independly introduce the idea of
considering (O, L)-colouring and (k,O)-choosability.

The aim of this paper is to prove some extensions of two basic theorems
in the colouring theory of graphs, namely the Brooks [2] and Gallai [4]
theorems. If L(v) is the same for all vertices of G, this results generalize also
the corresponding results of [1]. Moreover, we prove that chP(G) − χP(G)
can be arbitrarily large.

2. Behaviour of the P-Choice Number

To prove the main theorem of this section, use well-known Pigeonhole Prin-
ciple in the following form.

Pigeonhole Principle. Suppose that q1, ..., qt are positive integers. If X =
X1 ∪ ... ∪ Xt is a partition of the set X and | X |≥ (

∑t
i=1 qi) − t + 1, then

| Xi |≥ qi for some i ∈ {1, ..., t}.

Theorem 1. Let P ∈ Ma and 1 ≤ c(P) < ∞. Then for any nonnegative

integer s there exists a graph Gs such that chP(Gs) − χP(Gs) >s.

Proof. For a given c(P) let the function g(l) be defined by

g(l) =

⌈
l(l − 1) − 2 + c(P)(c(P) + 3)

2c(P)(c(P) + 3)

⌉
− 1 − l

The function g(l) tends to infinity with l → ∞. Hence, for given s and c(P)
there is an integer l0 ≥ 3 such that g(l0) ≥s. For this integer l0, let

(∗) b =

⌈
l0(l0 − 1) − 2 + c(P)(c(P) + 3)

2c(P)(c(P) + 3)

⌉
− 1

Note that b ≥ s + l0 ≥ 3.

Let the graph Gs be given by the join H1 + . . . + Hl0 of totally dis-

connected graphs Hi, i = 1, . . . , l0, all of order t =

(
2b − 1

b

)
, i.e., Gs is a

complete l0-partite graph with t elements in each part.

Since P ∈ Ma and K1 ∈ P, then Hi ∈ P for i = 1, . . . , l0. Hence,
χP(Gs) ≤ l0. Note that it is sufficient to prove that Gs is not (b,P)-
choosable, i.e., chP(Gs) > b. By this and (∗) we have chP(Gs) − χP(Gs) >

b − l0 ≥ s.
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To prove this, let C = {1, . . . , 2b− 1} be a set of colours and let [C]b = {A :
A ⊆ C, | A |= b}. Suppose that this set is indexed as follows {Aj : j =
1, . . . , t}. Besides, let V (Hi) = {vij : j = 1, . . . , t}, i = 1, . . . , l0 .

Define a list L for the graph Gs by L(vij) = Aj for all i and j. Let f be a

(P, L)-colouring of Gs. Note that

(a) For any colouring of the graph Hi from its lists we need at least b different
colours for any i = 1, . . . , l0.

(b) For i1, i2 ∈ {1, . . . l0}, i1 6= i2, there is j1, j2 ∈ {1, . . . , t} and a colour
c ∈ C such that f(vi1j1) = f(vi2j2)=c. This follows by (a) and | C |= 2b−1.

The colour c is said to be {i1, i2}-colour. Let X = {{i1, i2} : {i1, i2}-colour}
and Xc = {{i1, i2} : c is {i1, i2}-colour}, c ∈C.

Let be given a sequence of integers q1 = . . . = q2b−1 =

(
c(P) + 2

2

)
.

Note that X = X1 ∪ . . . ∪ X2b−1. By above and (∗) we have

| X |=

(
l0
2

)
≥

2b−1∑

i=1

qi − (2b − 1) + 1.

Hence, by Pigeonhole Principle it follows that there is c0 ∈ C, such that

| Xc0 |≥ qc0 =

(
c(P) + 2

2

)
. It implies that there are at least c(P) + 2

pairwise different integers i1, . . . , ic(P)+2 ∈ {1, . . . , l0} and for any ir there is
an integer j, 1 ≤ j ≤ t, such that f(virj) = c0. By above and the definition
of Gs, the subgraph of Gs induced by vertices with the assigned colour c0

contains a complete graph of order c(P) + 2, i.e., it is not (b,P)-choosable.
Hence, chP(Gs) >b.

3. (P, L)-Critical Graphs

For a nontrivial property P ∈ M a graph G is said to be (P, L)-critical if G

has no (P, L)-colouring but G − v is (P, L)-colourable for all v ∈ V (G).

Lemma 1. If P ∈ M and G is (P, L)-critical, then dG(v) ≥ δ(P) | L(v) |
for any vertex v of G.

Proof. Suppose that dG(u) < δ(P) | L(u) | for a vertex u ∈ V (G). Then
there is i ∈ L(u) which is used in colouring of the vertices of NG(u) less
than δ(P) times. Therefore, the vertex u can be coloured by i, < Vi >G∈ P
and G is not (P, L)-critical, a contradiction.
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Let P ∈ M, G be (P, L)-critical and x ∈ V (G). Define a new list assignment

Lx(v) =

{
{l}, v = x,

L(v), otherwise,

where l 6∈ L(v) for v ∈ V (G).

Since, by the definition, G − w is (P, L)-colourable, then G is (P, Lw)-
colourable. Thus, for a vertex w of a (P, L)-critical graph G we shall say
that f is a (P, Lw)-colouring of G, whenever f(w) = l and f(v) ∈ L(v) for
v 6=w.
Note that the list Lx is always created from the list L by assignment of the
colour l to the vertex x and preserving the remaining assignments.

Let us denote by S(G) = {v : v ∈ V (G), dG(v) = δ(P) | L(v) |}.

From Lemma 1 we have immediatelly the following lemma.

Lemma 2. Let G be a (P, L)-critical, w ∈ S(G). Then for any (P, Lw)-
colouring f of G, | NG(w) ∩ Vi |= δ(P) for any i ∈ L(w), where Vi = {v :
v ∈ V (G), f(v) = i}.

Lemma 3. Let G be a (P, L)-critical, u, v ∈ S(G), uv∈ E(G), and let f be

a (P, Lv)-colouring of G. Then there is a (P, Lu)-colouring f ′ of G such hat

f ′(v) = f(u) and f ′(w) = f(w) for all w ∈ V (G) − {u, v}.

Proof. Since u, v ∈ S(G), by Lemma 2 we have f(u) ∈ L(v). From this,
the definition of the (P, Lx)-colouring and again Lemma 2, the required f ′

colouring follows.

Lemma 4. Let G be a (P, L)-critical and Q : v0v1...vm be a walk in G such

that V (Q) = {v0, v1, ..., vm} ⊆ S(G). Let f be a (P, Lv0)-colouring of G.

Then there is a (P, Lvm)-colouring f ′ of G such that f ′(vi) = f(vi+1) for i =
1, ..., m− 1, f ′(vm) = f(v0) = l and f ′(w) = f(w) for all w ∈ V (G)−V (Q).

Proof. By applying Lemma 3 to the consecutive adjacent vertices of Q we
obtain the required f ′ colouring.

The procedure described by Lemma 4 will be called (P, Lx)-recolouring of Q.

Lemma 5. Let G be a (P, L)-critical and C : v0v1...vmv0 be a cycle in G

with V (C) = {v0, v1, ..., vm} ⊆ S(G) and let f be a (P, Lv0)-colouring of G.

Then there is a (P, Lv0)-colouring f ′ of G such that f ′(vi) = f(vi+1) for

i = 0, 1, ..., m − 1, f ′(vm) = f(v1), f ′(w) = f(w) for all w ∈ V (G) − V (C).
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Proof. By (P, Lx) recolouring of Q : v0v1 . . . vmv0 it follows.

Lemma 6. Let C : v0v1...vmv0 be an even cycle in a (P, L)-critical graph G

with V (C) ⊆ S(G). If there exists a vertex vj which is not incident to any

diagonal of C, then in any (P, Lvj )-colouring f of G all vertices of C but vj

have the same colour.

Proof. By the assumption, NC(vj) = {vj−1, vj+1}. Let f be an arbitrary
(P, Lvj )-colouring of G. By Lemma 2 the vertex vj has δ(P) neighbours in
each colour from its list. Lemma 4 implies that this property is preserved
after (P, Lx)-recolouring of a walk W : vj+1 . . . vmv0 . . . vj−1. Since C is an
even cycle we have that all vertices of C but vj have the same colour.

Lemma 7. (Dirac, see [4], p.170). If each even cycle in the block B of

a graph G has at least two diagonals in G, then the block B is a complete

subgraph of G.

Theorem 2. Let P ∈ M, G be a (P, L)-critical graph. Then any block of

< S(G) >G is one of the following types:

(i) B is a complete graph,

(ii) B is a δ(P)-regular graph belonging to C(P),
(iii) B ∈ P and ∆(B) ≤ δ(P),
(iv) B is an odd cycle.

Proof. We have considered three cases.

Case 1. The block B of < S(G) >G contains no even cycles.
Then either B = K2 or B contains an odd cycle C2p+1. In the case when
B 6= C2p+1, either C2p+1 has a diagonal in < S(G) >G or there exists a
vertex u of B not belonging to C2p+1. In both cases there is an even cycle
in B, a contradiction.

Case 2. There is an even cycle C2p : v0v1 . . . v2p−1v0 in B which contains
a vertex vj not incident to any diagonal of C2p.
Let f be a (P, Lvj )-colouring of G. By Lemma 6 all vertices of C2p but vj

have the same colour. Let us suppose that f(vi) = a, i 6=j. We are going to
prove that all vertices of B but vj are coloured in f by a. Suppose that there
exists a vertex z 6= vj such that f(z) 6=a. Then since B is 2-connected and
z 6∈ V (C2p) there exists a cycle C ′ : vjvj+1 . . . z . . . vj . By applying Lemma 5
to the cycle C ′ we can obtain (P, Lvj )-colouring of G such that the vertices
vj+1, . . . , v2p−1, v0, . . . , vj of C2p are not coloured the same, a contradiction.
Thus, by Lemma 2, we have ∆(B) ≤ δ(P). If B is δ(P)-regular, then
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B ∈ C(P); otherwise vj could be recoloured by a, which contradicts that
G is (P, L)-critical. If there is a vertex u ∈ V (B) with dB(u) < δ(P),
then according to Lemma 4 by (P, Lx)-recolouring of a walk Q : vj . . . u,
we obtain (P, Lu)-colouring of G with all vertices of B but u coloured by a.
Since dB(u) < δ(P), we have B ∈ P.

Case 3. Each vertex of any even cycle C in B is incident with at least
one diagonal of C.
In this case, by Lemma 7, B is a complete subgraph of G.

4. (k,P)-Choice Critical Graphs. Generalizations of Gallai’s

and Brooks’ Theorems

For a nontrivial property P ∈ M, a graph G is said to be (vertex) (k,P)-
choice critical if chP(G) = k ≥ 2 but chP(G− v) < k for all vertices v of G.
According to the previous definitions, it follows immediatelly that if G is
(k + 1,P)-choice critical, then G is (P, L)-critical with some list | L(v) |= k

for all v ∈ V (G).
Hence, by Theorem 2 we have the following generalization of Gallai’s

Theorem.

Theorem 3. Let P ∈ M and G be a (k,P)-choice critical graph. Then any

block of < S(G) >G is one of the following types:

(i) B is a complete graph,

(ii) B is a δ(P)-regular graph belonging to C(P),
(iii) B ∈ P and ∆(B) ≤ δ(P),
(iv) B is an odd cycle.

Note that in Theorem 3, S(G) = {v : v ∈ V (G), dG(v) = δ(P)(k − 1)}.

Lemma 8. Let P ∈ Ma and let G be a connected graph with | L(v) |≥ dG(v)
δ(P)

for all v ∈ V (G), and let there exist a vertex v0 ∈ V (G) such that | L(v0) |≥
dG(v0)+1

δ(P) . Then G is (P, L)-colourable.

Proof. The proof is by induction on the order of G. Let | V (G) |= 1. Then
G = K1, | L(v) |≥ 1 for v ∈ V (G) and Lemma is true.
Assume the Lemma holds for all graphs of order ≤n. Let | V (G) |= n + 1
and let L be a list satisfying the assumptions of the Lemma. Consider the
graph G − v0 and its list L̃(v) = L(v) for all v ∈ V (G) − {v0}. Since G is
connected, then in each component G′ of G − v0 there is a vertex u such
that uv0 ∈ E(G). Thus,
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| L̃(u) |≥ dG(u)
δ(P) =

dG′ (u)+1
δ(P) .

For the remaining vertices of each component

| L̃(v) |≥ dG(v)
δ(P) ≥

dG′ (v)
δ(P) holds.

Then, by the induction hypothesis, each component G′ of G − v0 is (P, L̃)-
colourable. Since P ∈ Ma, we have (P, L̃)-colourability f ′ of G−v0. We will
prove that f ′ can be extended to (P, L)-colourability f of G. Suppose, con-
trary to our claim. It implies that the vertex v0 has at least δ(P) neighbours
in each colour class Vi for i ∈ L(v0). Thus,

dG(v0) ≥ δ(P) | L(v0) |≥ δ(P)dG(v0)+1
δ(P) = dG(v0) + 1, a contradiction.

Theorem 4. Let P ∈ Ma and G be a connected graph other than

(i) a complete graph of order nδ(P) + 1, n ≥ 0,

(ii) a δ(P)-regular graph belonging to C(P),
(iii) an odd cycle if P = O.

Then

chP(G) ≤

⌈
∆(G)

δ(P)

⌉
.

Proof. By Lemma 8, the Theorem is true for all not regular graphs and
for any graph G with ∆(G) 6≡ 0 (mod δ(P)). So, let G be a regular graph
with ∆(G) = (k − 1)δ(P). Since G 6= K1 we have k ≥ 2. Now, suppose
the assertion of the Theorem is false for a list L, with | L(v) |= k − 1 for
all v ∈ V (G). By Lemma 8 it follows that for each vertex v ∈ V (G) and
each component G′ of G − v there exists (P, L)-colouring. Since, P ∈ Ma

we have chP(G − v) ≤ k − 1 for all v ∈ V (G). Thus, chP(G) = k, i.e., G is
(k,P)-choice critical. Since S(G) = V (G), then by Theorem 3, for k=2 it
follows that G is a δ(P)-regular graph with chP(G) > 1. Hence, G ∈ C(P),
a contradiction.

If k ≥ 3, also by Theorem 3, we have that G is a complete graph of order
(k − 1)δ(P) + 1 or G is an odd cycle (only in the case when P = O),
a contradiction.
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