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Abstract

We prove: (1) that chp(G) — xp(G) can be arbitrarily large, where
chp(G) and xp(G) are P-choice and P-chromatic numbers, respec-
tively, (2) the (P, L)-colouring version of Brooks’ and Gallai’s theo-
rems.
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1. INTRODUCTION AND NOTATION

We consider finite undirected graphs without loops and multiple edges. The
vertex set of a graph G is denoted by V(G) and the edge set by E(G). The
notation H C G means that H is a subgraph of G. The vertex induced (we
will say briefly: induced) subgraph H of G is denoted by H <G. We say that
G contains H whenever G contains a subgraph isomorphic to H. In general,
we follow the notation and terminology of [5].

Let 7 denote the set of all mutually nonisomorphic graphs. If P is a
nonempty subset of Z, then P will also denote the property that a graph is
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a member of the set P. We shall use the terms set of graphs and property
of graphs interchangeably.

A property P of graphs is said to be induced hereditary (shortly: hereditary)
if whenever G € P and His a vertex induced subgraph of G, then also H € P.
For convenience, the empty set () will be regarded as the set inducing the
subgraph with any property P.

A property P is additive, if for each graph G all of whose components
have the property P it follows that G € P. Let us denote by M and M? the
set of all hereditary and additive hereditary properties, respectively. Any
hereditary property P of graphs is uniquely determined by the set C(P) of
all forbidden subgraphs defined by

CP)={HeZ:H¢Phbut (H—v)eP foranyve V(H)}.

It is easy to prove that a property P € M is additive if and only if all
forbidden subgraphs H € C(P) are connected.

A hereditary property P € M is said to be nontrivial if P # Z. For a
nontrivial property P € M there exists a number ¢(P) called the completness
of P defined as sup{k : K41 € P}, and ¢(P) = oo if for every k, Ki o € P.
Let §(P) =min{dé(H) : H € C(P)}.

Let us denote by O = {G : G € Z,E(G) = (}. For this property we have
C(O) ={Ksy} and 6(O) = 1.

A P-partition (colouring) of a graph G is a partition (Vi,...,V},) of V(G)
such that the subgraph < V; > induced by the set V; has property P for
each i = 1,...,n. If (V4,...,V,) is a P-partition of a graph G, then the
corresponding vertex colouring fis defined by f(v) = i whenever v € V;, for
i =1,...,n. The smallest integer n for which G has P-partition is called the
P-chromatic (or P-vertex-partition) number of G and is denoted by xp(G).
The O-chromatic number is the ordinary chromatic number. See [1] for a
survey and more details.

Let G be a graph and let L(v) be a list of colours (as above, positive integers)
prescribed for the vertex v, and P € M. A (P, L)-colouring is a graph P-
colouring f(v) with the additional requirement that for all v € V(G), f(v) €
L(v). If G admits a (P, L)-colouring, then G is said to be (P, L)-colourable.
The graph G is (k,P)-choosable if it is (P, L)-colourable for every list L of
G satisfying | L(v) |= k for every v € V(G). The P-choice number chp(G)
is the smallest natural number & such that G is (k, P)-choosable.
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Vizing [6] and Erdés, Rubin and Taylor [3] independly introduce the idea of
considering (O, L)-colouring and (k, O)-choosability.

The aim of this paper is to prove some extensions of two basic theorems
in the colouring theory of graphs, namely the Brooks [2] and Gallai [4]
theorems. If L(v) is the same for all vertices of G, this results generalize also
the corresponding results of [1]. Moreover, we prove that chp(G) — xp(G)
can be arbitrarily large.

2. BEHAVIOUR OF THE P-CHOICE NUMBER

To prove the main theorem of this section, use well-known Pigeonhole Prin-
ciple in the following form.

Pigeonhole Principle. Suppose that qu, ..., q: are positive integers. If X =
X1 U ..U Xy is a partition of the set X and | X |> (Xi_; q;) —t + 1, then
| Xi |> qi for somei € {1,...,t}.

Theorem 1. Let P € M® and 1 < ¢(P) < oo. Then for any nonnegative
integer s there exists a graph G such that chp(Gs) — xp(Gs) >s.

Proof. For a given ¢(P) let the function ¢(/) be defined by

1(1—1) =2+ c(P)(c(P) +3)w 1

90 = | 2(P)(c(P) + 3)

The function g¢(I) tends to infinity with [ — oo. Hence, for given s and ¢(P)
there is an integer lp > 3 such that g(ly) >s. For this integer Iy, let

(*) b— "lo(lo — 1) -2+ C(P)(C(P) + 3>—‘ 1

2¢(P)(c(P) + 3)

Note that b > s+ 1y > 3.
Let the graph Gy be given by the join Hy + ... + Hj, of totally dis-

2b_1>, ie., Ggis a

connected graphs H;, i = 1,...,lp, all of order t = < b

complete [p-partite graph with ¢ elements in each part.

Since P € M* and K; € P, then H; € P for ¢ = 1,...,lp. Hence,
xp(Gs) < lp. Note that it is sufficient to prove that Gg is not (b, P)-
choosable, i.e., chp(Gs) > b. By this and (*) we have chp(Gs) — xp(Gs) >
b—1ly>s.
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To prove this, let C = {1,...,2b— 1} be a set of colours and let [O]® = {4 :
A C C,] A|=b}. Suppose that this set is indexed as follows {A; : j =
1,...,t}. Besides, let V(H;) = {vz'j cg=1,...,thi=1,...,l .

Define a list L for the graph G4 by L(vij) = A; for all 7 and j. Let fbe a
(P, L)-colouring of G5. Note that

(a) For any colouring of the graph H; from its lists we need at least b different
colours for any ¢ = 1,..., 1.

(b) For iy,i2 € {1,...lo},i1 # i2, there is ji,jo € {1,...,t} and a colour
c € C such that f(v;,;,) = f(viyj,)=c. This follows by (a) and | C' |=2b—1.
The colour c is said to be {i1,i2}-colour. Let X = {{i1,i2} : {i1,i2}-colour}
and X, = {{i1,i2} : ¢ is {i1,i2}-colour},c €C.

c(P) + 2>

Let be given a sequence of integers q; = ... = qop_1 = 5

Note that X = X U...U Xg_1. By above and (*) we have

2b—1

| X |= <l§>2 ;qi—(%—l)—i—l,

Hence, by Pigeonhole Principle it follows that there is ¢ € C, such that
2
| Xey |2 ¢y = (C(P)2+ ) It implies that there are at least ¢(P) + 2
pairwise different integers i1, ..., i, p)42 € {1,...,lo} and for any i, there is
an integer j,1 < j <'t, such that f(v;,;) = co. By above and the definition
of G, the subgraph of G induced by vertices with the assigned colour ¢
contains a complete graph of order ¢(P) + 2, i.e., it is not (b, P)-choosable.
Hence, chp(Gs) >b. [

3. (P, L)-CriTiCAL GRAPHS

For a nontrivial property P € M a graph G is said to be (P, L)-critical if G
has no (P, L)-colouring but G — v is (P, L)-colourable for all v € V(G).

Lemma 1. If P € M and G is (P, L)-critical, then dg(v) > §(P) | L(v) |
for any vertex v of G.

Proof. Suppose that dg(u) < §(P) | L(u) | for a vertex u € V(G). Then
there is i € L(u) which is used in colouring of the vertices of Ng(u) less
than 6(P) times. Therefore, the vertex u can be coloured by i, < V; >g€ P
and G is not (P, L)-critical, a contradiction. ]
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Let P € M, G be (P, L)-critical and x € V(G). Define a new list assignment

pr = {W=e

L(v), otherwise,
where | ¢ L(v) for v € V(G).

Since, by the definition, G — w is (P, L)-colourable, then G is (P,L")-
colourable. Thus, for a vertex w of a (P, L)-critical graph G we shall say
that fis a (P, L")-colouring of G, whenever f(w) =1 and f(v) € L(v) for
v FW.

Note that the list L” is always created from the list L by assignment of the
colour [/ to the vertex = and preserving the remaining assignments.

Let us denote by S(G) = {v:v € V(G), dg(v) =46(P)|L(v) |}.

From Lemma 1 we have immediatelly the following lemma.

Lemma 2. Let G be a (P, L)-critical, w € S(G). Then for any (P, L")-
colouring f of G, | Ng(w) N'V; |= §(P) for any i € L(w), where V; = {v :
veV(G), f(v) =1i}. |

Lemma 3. Let G be a (P, L)-critical, u,v € S(G), we E(G), and let f be
a (P, LY)-colouring of G. Then there is a (P, L*)-colouring f' of G such hat
f'(v) = f(u) and f'(w) = f(w) for allw € V(G) — {u,v}.

Proof. Since u,v € S(G), by Lemma 2 we have f(u) € L(v). From this,
the definition of the (P, L*)-colouring and again Lemma 2, the required f’
colouring follows. ]

Lemma 4. Let G be a (P, L)-critical and Q : vov1...vy, be a walk in G such
that V(Q) = {vo,v1,...,um} € S(G). Let f be a (P,L")-colouring of G.
Then there is a (P, L'™)-colouring f" of G such that f'(v;) = f(viy1) fori =
1,om—1, f'(vm) = f(vo) =1 and f'(w) = f(w) for allw € V(G) —V(Q).

Proof. By applying Lemma 3 to the consecutive adjacent vertices of @ we
obtain the required f’ colouring. |

The procedure described by Lemma 4 will be called (P, L*)-recolouring of Q.

Lemma 5. Let G be a (P, L)-critical and C : vov1...u;mv9 be a cycle in G
with V(C) = {vo, v1,...,um} C S(G) and let f be a (P, L)-colouring of G.
Then there is a (P, L")-colouring f of G such that f'(v;) = f(viy1) for
i=0,1,....m—1, f'(vm) = f(n), f'(w) = f(w) for alw e V(G) -V (C).
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Proof. By (P, L") recolouring of Q : vgv; ... vy, it follows. [

Lemma 6. Let C : vgvy...upmvo be an even cycle in a (P, L)-critical graph G
with V(C) C S(G). If there exists a vertex vj which is not incident to any
diagonal of C, then in any (P, L% )-colouring f of G all vertices of C but v;
have the same colour.

Proof. By the assumption, N¢(vj) = {vj—1,vj+1}. Let fbe an arbitrary
(P, LY )-colouring of G. By Lemma 2 the vertex v; has 6(P) neighbours in
each colour from its list. Lemma 4 implies that this property is preserved
after (P, L*)-recolouring of a walk W : vj11...vpv0...vj—1. Since Cis an
even cycle we have that all vertices of C' but v; have the same colour. [

Lemma 7. (Dirac, see [4], p.170). If each even cycle in the block B of
a graph G has at least two diagonals in G, then the block B is a complete
subgraph of G. [

Theorem 2. Let P € M, G be a (P, L)-critical graph. Then any block of
< S(G) >¢ is one of the following types:
(i) B is a complete graph,
(ii) B is a 6(P)-regular graph belonging to C(P),
(i)
iv)

(iv

Proof. We have considered three cases.

B € P and A(B) < 6(P),
B is an odd cycle.

Case 1. The block B of < S(G) >¢ contains no even cycles.
Then either B = K5 or B contains an odd cycle Cy,11. In the case when
B # Cypt1, either Copyq has a diagonal in < S(G) > or there exists a
vertex u of B not belonging to Co,11. In both cases there is an even cycle
in B, a contradiction.

Case 2. There is an even cycle Cap, : vgv1 ... V25179 in B which contains
a vertex v; not incident to any diagonal of Cy),.
Let fbe a (P, L")-colouring of G. By Lemma 6 all vertices of Cy, but v;
have the same colour. Let us suppose that f(v;) = a,i #j. We are going to
prove that all vertices of B but v; are coloured in fby a. Suppose that there
exists a vertex z # v; such that f(z) #a. Then since B is 2-connected and
z ¢ V(Cyp) there exists a cycle C’ : vjvj11...2...v;. By applying Lemma 5
to the cycle C" we can obtain (P, LY )-colouring of G such that the vertices
Vj41,---,V2p—1,00, .. .,0j of Cop are not coloured the same, a contradiction.
Thus, by Lemma 2, we have A(B) < 6(P). If B is 6(P)-regular, then
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B € C(P); otherwise v; could be recoloured by a, which contradicts that
G is (P, L)-critical. If there is a vertex u € V(B) with dg(u) < §(P),
then according to Lemma 4 by (P, L*)-recolouring of a walk @ : v;...u,
we obtain (P, L")-colouring of G with all vertices of B but u coloured by a.
Since dp(u) < §(P), we have B € P.

Case 3. Each vertex of any even cycle C'in B is incident with at least
one diagonal of C.
In this case, by Lemma 7, B is a complete subgraph of G. [

4. (k,P)-CHOICE CRITICAL GRAPHS. GENERALIZATIONS OF GALLAI’S
AND BROOKS’ THEOREMS

For a nontrivial property P € M, a graph G is said to be (vertex) (k,P)-
choice critical if chp(G) =k > 2 but chp(G —v) < k for all vertices v of G.
According to the previous definitions, it follows immediatelly that if G is
(k 4+ 1,P)-choice critical, then G is (P, L)-critical with some list | L(v) |= k
for all v € V(G).

Hence, by Theorem 2 we have the following generalization of Gallai’s
Theorem.

Theorem 3. Let P € M and G be a (k,P)-choice critical graph. Then any
block of < S(G) >q is one of the following types:
(i) B is a complete graph,
(ii) B is a 6(P)-regular graph belonging to C(P),
(iii) B € P and A(B) <46(P),
(iv) B is an odd cycle.
Note that in Theorem 3, S(G) ={v:v € V(G),dg(v) = §(P)(k —1)}.

—

Lemma 8. Let P € M® and let G be a connected graph with | L(v) |> Cg%()v)
for allv € V(G), and let there exist a vertex vy € V(G) such that | L(vg) |>

%. Then G is (P, L)-colourable.

Proof. The proof is by induction on the order of G. Let | V(G) |= 1. Then
G =K, | L(v) |> 1 for v € V(G) and Lemma is true.

Assume the Lemma holds for all graphs of order <n. Let | V(G) |=n+1
and let L be a list satisfying the assumptions of the Lemma. Consider the
graph G — vg and its list L(v) = L(v) for all v € V(G) — {vo}. Since G is
connected, then in each component G’ of G — vy there is a vertex u such
that uvy € E(G). Thus,
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T da(u der(u)+1
[ L(w) 12 55 = "o

For the remaining vertices of each component

T dag(v der (v
| L(v) [> 965 > %) holds.

Then, by the induction hypothesis, each component G’ of G — vy is (P, E)—
colourable. Since P € M, we have (P, E)-colourabﬂity f' of G —wvy. We will
prove that f’ can be extended to (P, L)-colourability fof G. Suppose, con-
trary to our claim. It implies that the vertex vy has at least 6(P) neighbours
in each colour class V; for ¢ € L(vg). Thus,

d(vo) = 6(P) | L(vg) > 6(P) ezl = dg(wo) + 1, a contradiction.  m

Theorem 4. Let P € M® and G be a connected graph other than
(i) a complete graph of order nd(P) + 1,n > 0,
(ii) a 6(P)-regular graph belonging to C(P),
(iii) an odd cycle if P = O.

Then
A(G)

chp(G) < {6(77)} :

Proof. By Lemma 8, the Theorem is true for all not regular graphs and
for any graph G with A(G) # 0 (mod 6(P)). So, let G be a regular graph
with A(G) = (k — 1)§(P). Since G # K; we have k > 2. Now, suppose
the assertion of the Theorem is false for a list L, with | L(v) |= k — 1 for
all v € V(G). By Lemma 8 it follows that for each vertex v € V(G) and
each component G’ of G — v there exists (P, L)-colouring. Since, P € M*
we have chp(G —v) < k—1 for all v € V(G). Thus, chp(G) =k, ie., Gis
(k, P)-choice critical. Since S(G) = V(G), then by Theorem 3, for k=2 it
follows that G is a 6(P)-regular graph with chp(G) > 1. Hence, G € C(P),
a contradiction.

If k£ > 3, also by Theorem 3, we have that G is a complete graph of order
(k—1)0(P) +1 or G is an odd cycle (only in the case when P = O),
a contradiction. ]
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