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Abstract

We say that a spanning eulerian subgraph F ⊂ G is a flower in a
graph G if there is a vertex u ∈ V (G) (called the center of F ) such that
all vertices of G except u are of the degree exactly 2 in F. A graph G
has the flower property if every vertex of G is a center of a flower.

Kaneko conjectured that G has the flower property if and only if
G is hamiltonian. In the present paper we prove this conjecture in
several special classes of graphs, among others in squares and in a
certain subclass of claw-free graphs.
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1. Introduction

We consider only finite undirected graphs without loops and multiple edges.
For terminology and notation not defined here we refer to [1].

If x ∈ V (G), then by dG(x) we denote the degree of x and by NG(x)
(or simply N(x)) we denote the set of all vertices of G that are adjacent
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to x. Unlike in [1], we denote the induced subgraph on a set M ⊂ V (G) by
〈M〉. If for every x ∈ V (G), 〈N(x)〉 has a property P, then we say that
G is locally P.

The square of a connected graph H is the graph G = H2 such that
V (G) = V (H) and two vertices x, y are adjacent in G if and only if x, y
are at distance at most 2 in H. If G and G′ are graphs, then we say that G
is G′-free if G contains no induced subgraph isomorphic to G′. Specifically,
in the case that G′ = K1,3 we say that G is claw-free and the star K1,3 will
be also referred to as the claw.

Let G be a graph of order n ≥ 3 and u ∈ V (G). If there is a spanning
eulerian subgraph F of G such that dF (u) ≥ 2 and dF (v) = 2 for all
v ∈ V (G), v 6= u, then F is called a flower at u and the vertex u is called
the center of F. If F is a flower at u then the components of the graph
F −u will be called the leaves of F. Since 1 ≤ dF−u(x) ≤ 2 for every x 6= u,
every leaf of F is a path.

We say that a graph G has the flower property if G has a flower at u
for every u ∈ V (G).

Obviously, every hamiltonian cycle of G is a flower and hence every
hamiltonian graph has the flower property. Kaneko [4] conjectured that
these properties are equivalent.

Conjecture [4] (The Flower Conjecture). A graph G has the flower

property if and only if G is hamiltonian.

Kaneko and Ota [5] proved that if G has the flower property, then G is
1-tough and has a 2-factor.

In the present paper we prove the flower conjecture in several special
classes of graphs.

2. Observations

Proposition 1. Let G be a graph with a minimum degree δ(G) ≤ 3. Then

G has the flower property if and only if G is hamiltonian.

Proof. If x ∈ V (G) is a vertex such that dG(x) ≤ 3 then every flower at
x is a hamiltonian cycle.

Proposition 2. Let G be a graph with connectivity κ(G) ≤ 2.Then G has

the flower property if and only if G is hamiltonian.

Proof. If κ(G) = 1 then G is neither hamiltonian nor has the flower
property and thus we can assume that κ(G) = 2. Suppose that G has
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the flower property. Let {x, y} be a 2-vertex cut set of G. By the result of
Kaneko and Ota [5], G is 1-tough and hence G−{x, y} has two components
H1, H2. Choose zi ∈ Hi and let Fi be a flower of G at zi, i = 1, 2.
Then P1 = F1 −H1 is a hamiltonian {x, y}-path in G−H1 and, similarly,
P2 = F2 − H2 is a hamiltonian {y, x}-path in G − H2. But then the cycle
C = xP1yP2x is a hamiltonian cycle in G.

Proposition 3. Let G be a bipartite graph. Then G has the flower property

if and only if G is hamiltonian.

Proof. Let (X, Y ) be the bipartition of G. If F is a flower at u ∈ X,
then

∑
x∈X dF (x) = |E(F )| =

∑
y∈Y dF (y), from which

dF (u) + 2|X − {u}| = 2|Y |,

or, equivalently,

dF (u) − 2 + 2|X| = 2|Y |,

which implies |X| ≤ |Y |. Taking a flower F ′ at v ∈ Y, we get analogously
|X| ≥ |Y | and hence |X| = |Y |. This implies dF (u) = 2 and hence F is a
hamiltonian cycle.

Proposition 4. Let G be a graph and let x ∈ V (G) be such that 〈N(x)〉
is a complete graph. Then G has the flower property if and only if G is

hamiltonian.

Proof. Suppose that G has the flower property and let F be a flower at
x such that dF (x) is minimum. Suppose that dF (x) > 2 and let z1, z2 be
end vertices of two different leaves of F. Then, deleting from F the edges
xz1, xz2 and adding z1z2, we get a flower F ′ with dF ′(x) < dF (x), which
contradicts the minimality of F. Thus, dF (x) = 2 and F is a hamiltonian
cycle.

3. Squares

Fleischner [2] proved the following theorem.

Theorem A. [2] If H is a 2-connected graph and G = H2, then G is

hamiltonian.

The following statement is also due to Fleischner and follows from Theorem 3
of [3].
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Theorem B. [3] Let y be an arbitrary vertex of a 2-connected graph H.
Then the graph G = H2 contains a hamiltonian cycle C such that both

edges of C containing y are in E(H).

Using these two theorems, we can prove the following.

Theorem 5. Let H be a graph and G = H2. Then G has the flower

property if and only if G is hamiltonian.

Proof. Suppose that G = H2 and G has the flower property.

If H is 2-connected, then G is hamiltonian by Theorem A. Hence
κ(H) = 1.

If H has a vertex x with dH(x) = 1, then 〈NG(x)〉 is a complete graph
and G is hamiltonian by Proposition 4. Hence δ(H) ≥ 2.

If H has a cut edge (i.e. an edge which is a block) xy ∈ E(H), then,
since δ(H) ≥ 2, {x, y} is a 2-vertex cut set of G and G is hamiltonian by
Proposition 2.

Hence we can assume that H has connectivity κ(H) = 1, minimum
degree δ(H) ≥ 2 and every block of H has at least three vertices.

Let H1 be an end block (i.e. a block containing exactly one cut vertex)
of H and let x be the cut vertex of H in H1. By Theorem B, there is
a hamiltonian cycle C1 in H2

1 such that xx− ∈ E(H) and xx+ ∈ E(H)
(here we denote by x− and x+ the predecessor and successor of x on C).

Put H2 = H − (H1 − x), choose a vertex y ∈ NH1
(x) and let F be

a flower in G at y. We consider the subgraph F ′ = F − (H1 − x). Since
1 ≤ dF ′(v) ≤ 2 for every v ∈ V (H2) and dF ′(v) = 1 if and only if v = x
or v ∈ N(x), F ′ is a collection of paths Pi, i = 1, . . . , ℓ, with end vertices
ai, bi ∈ N(x) ∪ {x}, i = 1, . . . , ℓ.

If all the vertices ai, bi, i = 1, . . . , ℓ , are distinct from x, then, since
〈N(x) ∪ {x}〉 is a clique in G, C ′ = xa1P1b1a2P2b2 . . . aℓPℓbℓx

+Cx is a
hamiltonian cycle in G. Hence there is an i0 such that x = ai0 (or, similarly,
x = bi0). We can assume without loss of generality that x = a1 and then
analogously C ′ = xP1b1a2P2b2 . . . aℓPℓbℓx

+Cx is a hamiltonian cycle in G.

4. Claw-Free Graphs

Theorem 6. Let G be a graph and let x ∈ V (G) be such that 〈N(x)〉 is

connected and x is not a vertex of an induced claw in G. Then G has the

flower property if and only if G is hamiltonian.
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Proof. Suppose that G has the flower property but is not hamiltonian and
let F be a flower at x such that dF (x) is minimum. Let P1, . . . , Pℓ be
the leaves of F and denote by x1

i , x
2
i the end vertices of Pi, i = 1, . . . , ℓ.

If some end vertices xj1
i1

, xj2
i2

(i1 6= i2) of two different leaves Pi1 , Pi2 are

adjacent, then, deleting from F the edges xxj1
i1

, xxj2
i2

and adding xj1
i1

xj2
i2

, we
get a flower F ′ with dF ′(x) < dF (x). Hence, no end vertices of two differ-
ent leaves of F can be adjacent. This implies that ℓ = 2 since otherwise
〈x, x1

1, x
1
2, x

1
3〉 is an induced claw centred at x. Moreover, x1

1x
2
1 ∈ E(G)

(since otherwise 〈x, x1
1, x

2
1, x

1
2〉 is an induced claw centred at x) and, simi-

larly, x1
2x

2
2 ∈ E(G). Denote x1

i x
2
i = ei, i = 1, 2.

Since 〈N(x)〉 is connected, there is a path P in 〈N(x)〉 joining e1

to e2. Suppose that the flower F and the path P are chosen such that,
among all flowers F at x with minimum dF (x), the {e1, e2}-path P is the
shortest possible. We can assume without loss of generality that P is an
{x1

1, x
1
2}-path. Let x1

1 = z0, z1, . . . , zk = x1
2 be the vertices of P .

Suppose first that there is an integer i, 1 ≤ i ≤ k, such that zi−1zi ∈
E(F ). If zi−1zi ∈ E(P1), then, deleting from F the edges zi−1zi, xx1

1 and
xx2

1 and adding the edges x1
1x

2
1, xzi−1 and xzi (not excluding the possible

case i = 1), we get a contradiction with the minimality of P . Similarly we
show that zi−1zi /∈ E(P2) and hence zi−1zi /∈ E(F ) for any i, 1 ≤ i ≤ k,
i.e., no two consecutive vertices of P are consecutive on F .

We now consider the subgraph 〈z1, x, z−1 , z+
1 〉, where z−1 , z+

1 are the pre-
decessor and successor of z1 on F. If z−1 z+

1 ∈ E(G), then, deleting from F
the edges z1z

−

1 , z1z
+
1 and xz0 and adding the edges z0z1, z1x and z−1 z+

1 ,
we get a flower that contradicts the minimality of P. Hence, z−1 z+

1 /∈ E(G).
Since 〈z1, x, z−1 , z+

1 〉 cannot be an induced claw centred at z1, we have
xz−1 ∈ E(G) or xz+

1 ∈ E(G). We distinguish the following four cases.

Case Deleted edges Added edges

xz−1 ∈ E(G), z1 ∈ V (P1) z1z
−

1 , xx1
1, xx2

1 xz−1 , xz1, x
1
1x

2
1

xz−1 ∈ E(G), z1 ∈ V (P2) z1z
−

1 , xx1
2, xx2

2 xz−1 , xz1, x
1
2x

2
2

xz+
1 ∈ E(G), z1 ∈ V (P1) z1z

+
1 , xx1

1, xx2
1 xz+

1 , xz1, x
1
1x

2
1

xz+
1 ∈ E(G), z1 ∈ V (P2) z1z

+
1 , xx1

2, xx2
2 xz+

1 , xz1, x
1
2x

2
2

In each of these cases we get a contradiction with the minimality of P .

Corollary 7. Let G be a claw-free graph which is not locally disconnected.

Then G has the flower property if and only if G is hamiltonian.

Proof. Follows immediately from Theorem 6.
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Remark 8. It is easy to observe that if G is a locally disconnected claw-
free graph, then, for every x ∈ V (G), 〈N(x)〉 consists of two vertex disjoint
cliques and hence G is a line graph. Moreover, if G = L(H), then G is
locally disconnected if and only if H is triangle-free. Thus, according to
Theorem 6, for the proof of the flower conjecture in claw-free graphs, it
remains to prove it in the case that G is a line graph of a triangle-free
graph. Hence we have the following corollary.

Corollary 9. Let G be a claw-free graph that is not a line graph of a

triangle-free graph. Then G has the flower property if and only if G is

hamiltonian.
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