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Abstract

For positive integers d and m, let Pd,m(G) denote the property
that between each pair of vertices of the graph G , there are m in-
ternally vertex disjoint paths of length at most d. For a positive inte-
ger t a graph G satisfies the minimum generalized degree condition
δt(G) ≥ s if the cardinality of the union of the neighborhoods of each
set of t vertices of G is at least s. Generalized degree conditions that
ensure that Pd,m(G) is satisfied have been investigated. In particular,
it has been shown, for fixed positive integers t ≥ 5, d ≥ 5t2, and m,
that if an m-connected graph G of order n satisfies the generalized
degree condition δt(G) > (t/(t + 1))(5n/(d + 2)) + (m − 1)d + 3t2,
then for n sufficiently large G has property Pd,m(G). In this note,
this result will be improved by obtaining corresponding results on
property Pd,m(G) using a generalized degree condition δt(G), except
that the restriction d ≥ 5t2 will be replaced by the weaker restriction
d ≥ max{5t + 28, t + 77}. Also, it will be shown, just as in the origi-
nal result, that if the order of magnitude of δt(G) is decreased, then
Pd,m(G) will not, in general, hold; so the result is sharp in terms of
the order of magnitude of δt(G).
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1. Introduction

For positive integers d and m, let Pd,m(G) denote the property that be-
tween each pair of vertices of the graph G there are at least m internally
disjoint paths, each of length at most d. In [O] property Pd,m(G) and its ap-
plication to computer networks and distributed processing was introduced.
Extremal results for Pd,m(G) were investigated in [FJOST]. These results
were extended in [FGS] where various combinations of connectivity, mini-
mum degree, sum of degree properties, and neighborhood conditions imply-
ing Pd,m(G) were studied.

The neighborhood of a vertex v of a graph G is the collection of vertices
adjacent to v, and will be denoted by NG(v). For any set S of vertices of
G the neighborhood of v in S, which is NG(v) ∩ S, will be denoted NS(v).
For a fixed positive integer t and a graph G, we write δt(G) ≥ s if the
cardinality of the union of the neighborhoods of each set of t vertices of G
is at least s. In [FGL] conditions that imply Pd,m(G) based on generalized
minimum degrees were investigated. In particular, the following was proved.

Theorem A. Let t ≥ 5, d ≥ 5t2, and m ≥ 2 be fixed integers. If G is an

m-connected graph of order n with δt(G) ≥ (t/(t+1))(5n/(d+2))+(m−1)
d + 3t2, then for n sufficiently large Pd,m(G) is satisfied.

We will improve on Theorem A by proving the following result.

Theorem 1. Let t ≥ 5 and m ≥ 2 be fixed integers with s an integer sat-

isfying 0 ≤ s ≤ t− 2. If d ≥ max{5t+28, t+77} and G is an m-connected

graph of order n with

δt(G) ≥ max
s

(

t − s

t + 1 − s

) (

5n

d + 2 − s

)

+ (m − 1)d + 3t2,

then for n sufficiently large, Pd,m(G) is satisfied.

It can be shown that for d ≥ t2 + t − 2, the generalized degree condition
in Theorem 1 is just δt(G) ≥ (t/(t + 1))(5n/(d + 2)) + (m − 1)d + 3t2, (i.e.
when s = 0), so Theorem 1 does imply Theorem A and more.

2. Results

Notation and standard definitions in the paper will generally follow that
found in [CL]. Any special notation will be described as needed. For vertices
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x and y of a graph G let Pd,m(x, y) denote the property that there are m
internally vertex-disjoint x − y paths in G, each of length at most d. A
collection of such paths is called a Menger Path System for x and y. The
following technical lemma will be needed in the proof of Theorem 1. The
proof can be found in [FGL], but since it is short, for completeness it is
included here.

Lemma 2. Let d, m, t and k > 1 be fixed positive integers. Futhermore, let

G be an m-connected graph of order n with δt(G) ≥ n/k. If there exists a

pair {x, y} of vertices of G such that G does not satisfy Pd,m(x, y), but G+
uv does satisfy Pd,m(x, y) for each pair u, v of nonadjacent vertices, then for

n sufficiently large (say, n ≥ (kt)3md/3) G satisfies Pmax{d+1,2k+t},m(x, y).

Proof. Suppose that G contains a pair u, v of nonadjacent vertices such
that |NG(u)∩NG(v)| > md. By assumption, G+uv contains m internally
disjoint x − y paths P1, P2, · · · , Pm, each of length at most d, with uv ∈
E(P1). Since |NG(u) ∩ NG(v)| > md, there is a vertex z of G such that
uz, zv ∈ E(G) and z /∈ V (Pi), i = 1, 2, · · · , m. Clearly then, G contains
the desired system of x− y paths. Thus, we may assume that for every pair
u, v of nonadjacent vertices of G, |NG(u) ∩ NG(v)| ≤ md.

Since δt(G) ≥ n/k, there are at most t− 1 vertices of G of degree less
than n/kt. Let A = {v ∈ V (G) | degG v ≥ n/kt}. Construct a sequence
v1, v2, · · · , vℓ of vertices of G as follows. Let v1 be a vertex of minimum
degree in A with A1 = NA(v1) ∪ {v1}. Let v2 be a vertex of minimum
degree in A − A1 with A2 = NA(v2) ∪ {v2}. In general, let vi be a vertex
of minimum degree in A−∪i−1

j=1Aj with Ai = NA(vi)∪{vi}. Then for some

ℓ, A = ∪ℓ
j=1Aj . For i 6= j, the vertices vi and vj are nonadjacent and,

consequently, |Ai ∩ Aj | ≤ md. Futhermore, since deg v ≥ n/kt for each
v ∈ A and n is sufficiently large, we have that ℓ ≤ kt + 1.

For i = 1, 2, · · · , ℓ, let Bi = Ai − ∪j 6=iAj . Let u, v ∈ Bi for some
1 ≤ i ≤ ℓ and suppose uv /∈ E(G). Since uv /∈ E(G), we have that
|NG(u) ∩ NG(v)| ≤ md. Thus, one of u and v, say u, has at most (|Bi| +
md)/2 adjacencies in Bi. Futhermore, u has at most ℓmd adjacencies in
A − Bi. Thus, for n sufficiently large,

degA u ≤ (|Bi| + md)/2 + ℓmd < deg(A−∪i−1

j=1
Aj)

vi,

contradicting the choice of vi. Thus, the subgraph < Bi >G induced by Bi

in G is complete for i = 1, 2, · · · , ℓ.
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Next, consider an arbitrary w ∈ A−∪ℓ
i=1Bi. Since degG w ≥ n/tk, for some

1 ≤ i ≤ ℓ we have |NG(w)∩Bi| > md. Consequently, w is adjacent to each
vertex of Bi. Thus G contains disjoint sets C1, C2, · · · , Cℓ of vertices, each
with approximately n/kt or more vertices, such that | ∪ℓ

i=1 Ci| ≥ n − t + 1
and < Ci >G is complete for i = 1, 2, · · · , ℓ.

If for some i, |Ci| < n/k − (mdℓ)t, then, since δt ≥ n/k, each vertex of
Ci, with at most t − 1 exceptions, will be adjacent to at least md vertices
of some Cj . However, if a vertex is adjacent to md vertices of Cj , it is
adjacent to all vertices of Cj . Thus, for some j 6= i, each of the vertices
of Cj is adjacent to each of the vertices of Ci. Hence, we can assume that
|Ci| ≥ n/k − (mdℓ)t for i = 1, 2, · · · , ℓ, and ℓ ≤ k.

Let P1, P2, · · · , Pm be a collection of m internally disjoint x − y paths,
the sum of whose lengths is minimum. Such Pi exist since G is m-connected.
Then each path Pi contains at most 2 vertices of Ci for i = 1, 2, · · · , ℓ and
ℓ ≤ k. Thus each Pi has length at most 2k + t. This completes the proof of
Lemma 2.

Before giving a proof of Theorem 1, we describe some examples which in-
dicate the nature of extremal examples for property Pd,m and show that
the result of Theorem 1 is asymptotically sharp. ”Generalized Wheel type”
graphs give important information on the extremal properties related to
Pd,m(G). We start with the wheel graph Wb = K1 + Cb that has b spokes
and b vertices on the rim. Replace each vertex of Wb with a complete
graph, and make each vertex of the corresponding complete graph adjacent
to the vertices in the neighborhood of the replaced vertex. The graphs ob-
tained by this expansion of vertices of a wheel form a family of “generalized
wheels”. More precisely, order the vertices of Wb starting with the center
and followed by the vertices on the rim in a natural order around the cycle.
For positive integers p(i) (0 ≤ i ≤ b), the generalized wheel obtained from
Wb by replacing the ith vertex with a complete graph Kp(i) will be denoted
by W (p(0), p(1), · · · , p(b)).

In the cases of interest to us, most of the p(i)’s in the generalized
wheel will follow some pattern, so we will adopt the more compact nota-
tion of representing the sequence (p(j), · · · , p(k)) by (k − j + 1; p) when
p = p(j) = · · · = p(k). Thus, W (1, r; 1) = Wr. Also, if the pat-
tern (p(1), p(2), · · · , p(r)) is repeated s times, we will represent this by
(s; (p(1), p(2), · · · , p(r))). Hence the generalized wheel W (m, s; (1, p, p, 1))
has m vertices in the center and along the rim there is an alternating pat-
tern of two single vertices followed by two complete graphs with p vertices.
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With this notation we can now describe the examples that illustrate that
the result in Theorem 1 has the correct order of magnitude. Let m, d, s and
t be positive integers with 0 ≤ s ≤ t − 2. Let n be a positive integer such
that

r =
5n − 5m + 6 − 3s − 2d

(d + 2 − s)(t − s + 1)

is an integer. For d + 2 − s divisible by 5, consider the graph

Hs = W (m − 2, s; 1,
d + 2 − s

5
; (1, r, (t − s − 1)r, r, 1)).

This generalized wheel Hs has n vertices, is m-connected, and does not
satisfy Pd,m. Also,

δt(Hs) =

(

t − s

t − s + 1

) (

5n − 5m + 6 − 3s − 2d

d + 2 − s

)

+ m − 1.

By the previous examples, if δt(G) ≥ f is a generalized degree condition
implying that Pd,m(G) is satisfied, then f ≥ δt(Hs) for each s (0 ≤ s ≤ t−2).
However, if m and t are fixed and d ≥ t is considered as a variable, then
each function δt(Hs) (of d) will dominate the remaining δt(Hi) over some
subinterval of [t,∞). Note for n sufficiently large, that

δt(Hs) ≤ δt(Hs+1)

is equivalent to

t − s

(t − s + 1)(d + 2 − s)
≤

t − s − 1

(t − s)(d + 1 − s)
,

and this is equivalent to

d ≤ (t − s)2 + s − 2.

Therefore, if we let

I0 = [t2 − 2,∞), and

Is = [(t − s)2 + s − 2, (t − s + 1)2 + s − 3] for 0 < s ≤ t − 2,

then for d ∈ Is, we have δt(Hs) ≥ δt(Hi) for all i (0 ≤ i ≤ t − 2).

The previous discussion motivates the following statement of Theorem 1.
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Theorem 1′. Let t ≥ 5, d ≥ max{5t + 28, t + 77}, and m ≥ 2 be fixed

integers. If G is an m-connected graph of order n with

δt(G) ≥

(

t − s

t − s + 1

) (

5n

d + 2

)

+ (m − 1)d + 3t2 for d ∈ Is,

then for n sufficiently large, Pd,m(G) is satisfied.

Proof. Assume, to the contrary, for some d with (t − s)2 + s − 2 ≤ d ≤
(t+1−s)2 +s−3, that G is an m-connected graph with δt(G) ≥ (t−s)/(t+
1 − s))(5n/(d + 2 − s)) + (m − 1)d + 3t2 that does not satisfy Pd,m(G) but
G + uv does satisfy Pd,m(G) for each pair u, v of nonadjacent vertices of G.
Since G does not satisfy Pd,m(G), there are vertices x and y of G for which
G does not satisfy Pd,m(x, y). By Lemma 2, G contains a collection of m
internally disjoint x − y paths, each of length at most max{d + 1, 2⌊((t +
1 − s)/(t − s))(d + 2)/5)⌋ + t} = d + 1. Among all such collections let
P1, P2, · · · , Pm be one, the sum of whose lengths is minimum.

Assume now that P1 has length d+1, say P1 : x = x1, x2, · · · , xd+2 = y.
Let N = V (G)−∪m

j=2V (Pj). Observe that if v ∈ N , then v can be adjacent
to at most 3 vertices of P1, and for any i, vxi and vxj for j ≥ i+3 are not
simultaneously in E(G). Let dN (u, v) denote the distance between u and v
in the graph induced by the vertices in N. For i = 1, 2, · · · , d + 2 define Ni

as follows:
N1 = {x1},

Ni = {v ∈ N | dN (x, v) = i − 1} for 2 ≤ i < d + 2, and

Nd+2 = N − ∪d+1
i=1 Ni.

For each i, xi ∈ Ni, the Ni’s form a partition of N. Note that if S ⊆
Ni, then N

G
(S) ⊆ ∪m

j=2V (Pj) ∪ Ni−1 ∪ Ni ∪ Ni+1. Let N(S) denote
N

G
(S) − ∪m

j=2V (Pj) ⊆ Ni−1 ∪ Ni ∪ Ni+1. Then if S has at least t ver-

tices, |N(S)| ≥ ( t−s
t+1−s

)( 5n
d+2−s

) + 3t2. Define a strong block of G to be a
sequence Ni, Ni+1, · · · , Nj that satisfies the following conditions:

(1) no two consecutive terms Nℓ and Nℓ+1 have |Nℓ| < t and |Nℓ+1| < t;
(2) if i 6= 1, then |Ni−1| < t and |Ni| < t; and
(3) if j 6= d + 2, then |Nj | < t and |Nj+1| < t.

The strong blocks partition the vertices of N and also form a partition of
the Nj ’s. The length of the strong block Ni, Ni+1, · · · , Nj is defined to be
j − i + 1; the left endpoint is xi and the right endpoint is xj . Each strong
block of length m ≥ 6 will be further partitioned into smaller pieces, with
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each piece containing either 2, 3, 4, or 5 consecutive Nj ’s. In fact if m 6≡ 1
mod 4, then each of these pieces will have either 3 or 4 consecutive Nj ’s,
and there will be at most 2 pieces with 3 terms that will contain endpoints
of the strong block. If m ≡ 1 mod 4, then each of these pieces will have
length 3, 4, or 5; however, the number of pieces of length 5 will be at
most 1 and will contain an endpoint of the strong block. The blocks of G
will be the strong blocks of G of length at most 5 or the smaller pieces of
length 2, 3, 4 , or 5 that partition the strong blocks of length at least 6.
Thus, the blocks of G also partition the vertices of N and form a partition
of the Nj ’s.

Each block contains either 1, 2, 3, 4 or 5 consecutive Nj ’s, and all blocks
of length 1, 2, or 5 are either strong blocks or contain an endpoint of a strong
block. Note also, that any (strong) block of length 2 must be Nd+1, Nd+2

and that |Nd+2| ≥ t. If Ni, Ni+1, Ni+2 is a block of length 3, then |Ni+1| ≥ t,
if Ni, Ni+1, Ni+2, Ni+3 is a block of length 4, then |Ni+1| ≥ t or |Ni+2| ≥ t,
and if Ni, Ni+1, Ni+2, Ni+3, Ni+4 is a block of length 5, then both |Ni+1| ≥ t
and |Ni+3| ≥ t. These latter properties are a result of properly chosing the
partitions of the long blocks.

Observe first that G contains at most t − 1 blocks of length 1; oth-
erwise, suppose Ni1 , Ni2 , · · · , Nit were t blocks of length 1. Then if S =
{xi1 , xi2 , · · · , xit}, we have |NG(S)| < 3t2 + (m− 1)d, contradicting δt(G) ≥
((t− 1)/(t + 1− s))(5n/(d + 2− s)) + (m− 1)d + 3t2. Assume, then, that G
has k blocks of length 1 where 0 ≤ k ≤ t − 1.

We first show that δt(G) ≥ ((t− s)/(t + 1− s))(5n/(d + 2− s)) + (m−
1)d + 3t2 for d ∈ Is implies that δt(G) ≥ ((t − k)/(t + 1 − k))(5n/(d + 2 −
k)) + (m− 1)d + 3t2 in the range 0 ≤ k ≤ t− 1. The required inequality is
equivalent to showing that

t − s

(t + 1 − s)(d + 2 − s)
≥

t − k

(t + 1 − k)(d + 2 − k)
.

for d ∈ Is. To verify the previous inequality it is sufficient to show that for
each 0 ≤ ℓ ≤ t − 2

t − ℓ

(t + 1 − ℓ)(d + 2 − ℓ)
≥

t − ℓ − 1

(t − ℓ)(d + 1 − ℓ)
.

is equivalent to
d ≥ (t − ℓ)2 + ℓ − 2.

This can be verified in a straightforward way. Thus, (t− s)/((t + 1− s)(d +
2 − s)) dominates (t − k)((t + 1 − k)(d + 2 − k)) for all k if d ∈ Is.
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To complete the proof it is sufficient to reach a contradiction by showing
that the generalized degree condition δt(G) ≥ ((t − k)/(t + 1 − k))(5n/(d +
2 − k)) + (m − 1)d + 3t2 implies that G has more than n vertices. Those
blocks of length 1 have at most t−1 vertices, but the remaining blocks have
some positive fraction of n vertices. We will show that, on the average, a
block of length r ≥ 1 will have at least rn/(d+2−k) vertices. This implies
that each of the d + 2 − k different Nj ’s not in a block of length 1 have,
on the average, n/(d + 2− k) vertices, and this implies G has more than n
vertices.

We will first consider the case when t − k ≥ 5. Each block of length s
for s = 2, 3, or 4 will be shown to have more than sn/(d+2−k) vertices. If
Ni, Ni+1 is a block of length 2, then necessarily i+1 = d+2 and |Nd+2| ≥ t.
Let S ⊆ Nd+2, where |S| = t. Then N(S) ⊆ Nd+1 ∪ Nd+2 and so

|Nd+1 ∪ Nd+2| ≥ |N(S)| >

(

t − k

t − k + 1

) (

5n

d + 2 − k

)

>

(

2n

d + 2 − k

)

,

since t − k ≥ 5. Moreover, the block of length 2 will have more than the
required average. In fact, each Nj in such a block will have, on the average,
an excess of at least

1

2

((

t − k

t − k + 1

) (

5n

d + 2 − k

)

−

(

2n

d + 2 − k

))

=
(3(t − k) − 2)n

2(t + 1 − k)(d + 2 − k)
.

If Ni, Ni+1, Ni+2 is a block of length 3, then |Ni+1| ≥ t and so, as above, we
have

|Ni ∪ Ni+1 ∪ Ni+2| >

(

t − k

t − k + 1

) (

5n

d + 2 − k

)

>

(

3n

d + 2 − k

)

.

In this case, the average excess of each Nj in a block of length 3 is at least

(2(t − k) − 3)n

3(t + 1 − k)(d + 2 − k)
.

If Ni, Ni+1, Ni+2, Ni+3 is a block of length 4, then |Ni+1| ≥ t or |Ni+2| ≥ t,
and again we have

|Ni ∪ Ni+1 ∪ Ni+2 ∪ Ni+3| >

(

t − k

t − k + 1

) (

5n

d + 2 − k

)

>

(

4n

d + 2 − k

)

.

In this case, the average excess of each Nj in a block of length 4 is at least

((t − k) − 4)n

4(t + 1 − k)(d + 2 − k)
.
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Therefore, for those Nj that are in a block of length 2, 3 or 4, the average
excess over the required n/(d+2−k) is at least ((t−k)− 4)n/(4(t+1−k)
(d+2−k)), which is the minimum excess for those Nj in blocks of length 4.

If Ni, Ni+1, Ni+2, Ni+3, Ni+4 is a block of length 5, then |Ni+1| ≥ t and
|Ni+3| ≥ t, and again we have

|Ni ∪ Ni+1 ∪ Ni+2 ∪ Ni+3 ∪ Ni+4| >

(

t − k

t − k + 1

) (

5n

d + 2 − k

)

.

However, in this case the required 5n/(d+2−k) is not ensured, and in fact
there is a deficit in the entire block of at most 5n/((t + 1 − k)(d + 2 − k)),
or an average deficit on each Nj of at most n/((t + 1 − k)(d + 2 − k)). If

|Ni+1| or |Ni+3| ≥

(

1

t − k + 1

) (

5n

d + 2 − k

)

,

then a stronger statement

|Ni ∪ Ni+1 ∪ Ni+2 ∪ Ni+3 ∪ Ni+4| >

(

5n

d + 2 − k

)

is true. Blocks of length 5 with |Ni+1| or |Ni+3| ≥ 5n/((t−k+1)(d+2−k))
will be called positive blocks, and the remaining blocks of length 5 will be
called negative blocks.

If G contains no blocks of length 5, then the average number of vertices
in those d + 2 − k distinct Nj ’s in blocks of length at least 2 is at least
n/(d + 2 − k), and so

|N1 ∪ N2 ∪ · · · ∪ Nd+2| > (d + 2 − k)

(

n

d + 2 − k

)

= n,

and we arrive at a contradiction. Thus, we may assume that G contains
r ≥ 1 blocks of length 5. If there are as many as t − k blocks of length 5,
then consider a set S of t vertices in N obtained by selecting one vertex
from each of the k distinct blocks of length 1, and the left endpoint (or
right endpoint) of each of the t − k blocks of length 5. Then |N(S)| ≥
5(t− k)n/((t− k + 1)(d + 2− k)) + 3t2, and thus the corresponding “Ni+1”
in one of the t − k blocks of length 5 with endpoint xi must have at least
5n/((t− k +1)(d+2− k)) vertices and so the block is positive. Also, on the
average, the t − k blocks of length 5 have at least 5n/(d + 2 − k) vertices.
We can conclude from this that the number of negative blocks is less than
t − k, and if there are as many as t − k blocks of length 5, then on the
average the blocks of length 5 have at least 5n/(d + 2 − k) vertices.
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Consequently, if there are as many as t − k blocks of length 5, then each
block of length s ≥ 2 has, on the average sn/(d + 2 − k) vertices. Hence,

|N1 ∪ N2 ∪ · · · ∪ Nd+2| > (d + 2 − k)

(

n

d + 2 + ℓ − t

)

= n,

a contradiction. Thus, we can conclude that the number r of blocks of
length 5 is less than t − k. The deficit from all the blocks of length 5 is at
most

5n(t − k − 1)

(t + 1 − k)(d + 2 − k)
,

and the excess from the remaining blocks is at least

n(d + 3 − t)(t − k − 4)

4(t + 1 − k)(d + 2 − k)
.

If this excess is greater than the deficit above, then a contradiction to the
number of vertices in G is again reached. Thus, to complete this case, it is
sufficient to show that

(d + 3 − t)(t − k − 4)

4
≥ 5(t − k − 1),

or equivalently

d ≥
20(t − k − 1)

t − k − 4
+ t − 3.

However, this last inequality is true for d ≥ t + 77, as t − k ≥ 5.
We are now left with the case t − k ≤ 4. Note that since d ≥ 5t + 28,

s and t must satisfy the inequalities

5t + 28 ≤ d ≤ (t − s + 1)2 + s − 3 ≤ t2 + 2t − 2.

It follows immediately that t ≥ 8, and therefore from the first two inequali-
ties we can also conclude t − s ≥ 8.

Just as in the previous case, the average number of vertices in those Nj

that are in a block of length 2, 3, or 4 is at least

M :=

(

1

4

) (

t − s

t − s + 1

) (

5n

d + 2 − s

)

.

This follows from the fact that blocks of length 4 give the minimum value.
Since t − s ≥ 8, the average number of vertices in these Nj is at least
10
9 n/(d + 2 − s).
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Suppose G contains two blocks Ni, Ni+1, . . . , Ni+4 and Nj , Nj+1, . . . , Nj+4

of length 5. Let S be a set of t vertices consisting of xi, xi+4, xj , xj+4

and t − 4 ≤ k vertices chosen from the blocks of length 1. Since the set
S has at most (m − 1)d adjacencies on the other paths Pi for i 6= 1,
|N(S)| ≥ ((t − s)/(t + 1 − s))(5n/(d + 2 − s)) + 3t2. Note also that there
are at most 3t2 vertices in N(S) that are not in one of the 2 blocks of
length 5. It follows that one of Ni+1, Ni+3, Nj+1, Nj+3 contains at least
(1/4)((t − s)/(t + 1 − s))(5n/(d + 2 − s)) vertices, so that one of the two
blocks of length 5 contains at least

(

t − s

t + 1 − s

) (

5n

d + 2 − s

)

+

(

1

4

) (

t − s

t + 1 − s

) (

5n

d + 2 − s

)

= 5M

vertices. Moreover, when k ≥ t − 2 , a similar argument applies for the last
block of length 5 as well. In the latter case all blocks but those of length 1
contain at least M vertices in their parts Nj on the average. Therefore
the number of vertices is greater than (d + 2 − k)M ≥ (d + 3 − t)M. It
can be observed that M, when viewed as a function of s, takes its smallest
value when s = 0 or when s is as close to t as possible (i.e., s = t− 8). In
either case, (d + 3 − t)M ≥ n can be verified as d ≥ 5t + 28 and d ≥ t + 60,
respectively.

In the case k ≤ t − 3, an even stronger inequality is true, because the
last block of length 5 contains at least 4M vertices. Therefore, G must
contain at least (d + 4 − t)M ≥ n vertices, a final contradiction.
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