
Discussiones Mathematicae

Graph Theory 15 (1995) 147–166

A LINEAR ALGORITHM FOR THE TWO PATHS

PROBLEM ON PERMUTATION GRAPHS

C.P. Gopalakrishnan and C. Pandu Rangan

Department of Computer Science

Indian Institute of Technology

Madras 600 036, India

e-mail: rangan@iitm.ernet.in

Abstract

The ‘two paths problem’ is stated as follows. Given an undirected
graph G = (V,E) and vertices s1, t1; s2, t2, the problem is to deter-
mine whether or not G admits two vertex-disjoint paths P1 and P2

connecting s1 with t1 and s2 with t2 respectively. In this paper we
give a linear (O(| V | + | E |)) algorithm to solve the above problem
on a permutation graph.

Keywords: algorithm, bridge, connectivity, disjoint paths, permuta-
tion graph, two paths problem.

1991 Mathematics Subject Classification: 05C38, 05C85.

1. Introduction

Given an undirected graph G and distinct vertices s1, t1, s2, and t2, the ‘two
paths problem’ (abbreviated as TPP) is to determine whether there exists two
vertex-disjoint paths connecting s1 with t1 and s2 with t2 and to find such
paths if they exist.

For the TPP on general undirected graphs, Shiloach [S 80] and Ohtsuki [O
80] gave an O(| V | ⋆ | E |) algorithm independently. Their methods were
totally different. In [S 80] a complicated reduction process is used to obtain
a solution of the problem for an arbitrary graph from the solutions of its
tri-connected components. In [O 80] the concept of bridges and a recursive

148 C.P. Gopalakrishnan and C. Pandu Rangan

strategy is used to solve the problem on a biconnected graph. For the TPP
on chordal graphs [PS 78] and [KPS 91] give an O(| V | + | E |) algorithm
by different methods. For planar graphs the problem can be solved in linear
time ([RP]).

In this paper we present a linear algorithm for the TPP on permutation
graphs. Our linear algorithm takes its spirit from the work of [O 80] and uses
certain vital properties of bridges of paths in permutation graphs.

2. Preliminaries

A permutation graph is a graph for which there is a labelling {v1, . . . , vn}
of the vertices and a permutation π of {1, . . . , n} for which (i − j)(π(i) −
π(j)) < 0 if and only if (vi, vj) is an edge.

Figure 1. A permutation graph and its permutation diagram.

In this paper, we make use of the geometric representation of a permutation
graph called the permutation diagram. Consider two parallel line segments A
and B and mark off n points on each segment. Label them as 1 . . . n in that
order on each segment. Let π denote a permutation of (1 . . . n). Now draw n

line segments, connecting point i in A to point π−1(i) in B, for 1 ≤ i ≤ n.

These n line segments will serve as the underlying intersection model for
the input permutation graph G. The permutation graph represented is the
one obtained by taking the line segments as vertices and the line crossings

A Linear Algorithm for the Two Paths Problem... 149

as edges. That is, (i, j) is an edge iff the line segments (i, π−1(i)) and
(j, π−1(j)) intersect. See Figure 1 for an example of a permutation graph
and its corresponding permutation diagram. Given any permutation graph,
Spinrad [S 83] shows how to construct a corresponding permutation diagram
in O(n2) time. Applications of permutation graphs are discussed in [G 80].

Figure 2. Chordless path in a permutation diagram.

Let P = [v0, v1, . . . , vk−1, vk] be a path of length k in a permutation graph.
That is, (vi, vi+1) ∈ E, for all 0 ≤ i < k. We sometimes use the notation
P (v0, vk) to indicate the above path between the source vertex v0 and sink
vk. The set of vertices of the path P is denoted by V (P) and the set of
edges constructing it is denoted by E(P). For two vertices vi, vj ∈ P , the
subpath of P between these two vertices is denoted by P [vi; vj]. An edge
{vi, vj} ∈ E−E(P) is called a chord of P. A chordless path has no chords. P

is called simple if vi 6= vj for 0 ≤ i < j ≤ k. The operation ‘.’ concatenates
two paths, i.e., if P = [v0, . . . , vp] and Q = [u0, . . . , uq] are two paths and
vp = u0, then P.Q denotes the path [v0, . . . , vp = u0, . . . , uq].

A path P = [v0, v1, . . . , vk] is a cycle of length k if k ≥ 3, vk = v0 and
P [v0, vk−1] is a simple path. A chordless cycle has no chords. We state the
following lemma about chordless cycles in a permutation graph.

Lemma 2.1. In a permutation graph, the length of a chordless cycle can be
at most four.

Consider the geometric representation of a simple chordless path P =
[v0, v1, . . . , vk−1, vk] (k > 3) in a permutation graph as shown in Figure 2
(we are not showing the other vertices of the graph). Barring isomorphisms,
this is the only possible representation of the path. We call the vertices v0
and v1 as outside-head vertices and vk−1 and vk as outside-tail vertices. All

150 C.P. Gopalakrishnan and C. Pandu Rangan

the other vertices of the path are called as inside vertices. If the path consists
of only four vertices or less, then they are all outside vertices. We observe
that any vertex not belonging to V (P) and adjacent to an inside vertex
should also be adjacent to atleast one other vertex of the path. Whereas
outside vertices need not satisfy this criterion i.e., some other vertex not
belonging to the path can be adjacent to an outside vertex without being
adjacent to any other vertex of the path. All these can be easily verified by
inspecting Figure 2.

Definition 2.1. Let J be a fixed subgraph of G. Let V (J) be the set of
all vertices which belong to the subgraph J. Let E(J) be the set of edges
which constitute J. We define a bridge B of J as either of the following:
• a single edge e = (x, y) ∈ E − E(J) and x, y ∈ V (J). This is called

as a degenerate bridge.
• a maximal subgraph of G′ = (V,E − E(J)) with at least one vertex

x ∈ V − V (J) such that, for every other vertex y of B, there exists a path
R(x, y) without intersecting any vertex in V(J) except at y. This path is
usually called a cross-cut from x to y and is denoted by CCB(x, y).

The vertices of B which also belong to J are called the vertices of
attachment of B with respect to J.

In the following definitions let G = (V,E) be a graph. Without loss of
generality G is assumed to be bi-connected. Let i, j, k, l be four distinct
vertices of G and M(i, j) and N(k, l) be disjoint (henceforth disjoint means
vertex-disjoint) paths between i, j and k, l respectively.

Definition 2.2. (See Figure 5.) Let J = M ∪N. Let there exist two vertex-
disjoint paths P1(a, d) and P2(b, c) without traversing E(J), where a, b, c, d

are distinct bridge attachments such that i, a, b, j are in this order on M

and k, c, d, l are in this order on N. A pair of bridges B1 and B2 of J is
called alternating if B1 and B2 include P1(a, d) and P2(b, c), respectively.

Definition 2.3. Let J = M ∪ N. A bridge of J having two or more
attachments on each of M and N is called an eligible bridge.

Definition 2.4. (See Figure 6.) Let J = M ∪ N. For each eligible bridge
B of J , let a and b (c and d) be its attachments on M(N) closest to i

and j (k and l), respectively. Then we call the subgraph of G determined

A Linear Algorithm for the Two Paths Problem... 151

by the vertices and edges of B∪M [a; b]∪N [c; d] as the section graph GJ(B)
or simply G(B). a, b, c, d are called the endpoints of the section graph.

Definition 2.5. Let J = M ∪ N. Let G have a single bridge with re-
spect to J containing attachments i, j, k, l. A binary recursive function
f = (G,M,N) is defined as follows. f returns true (false) if two disjoint
paths M(i, l) and N(j, k) exist (do not exist). We refer to M as the top
path and N as the bottom path.

Definition 2.6. (See Figure 6.) Let P and Q be vertex-disjoint paths
between s1 and t2 and s2 and t1, respectively. Let J = P ∪Q and B be
the set of bridges with respect to J. The set B can be partitioned into the
following subsets:

BP : The set of bridges with every attachment on P.

BQ: The set of bridges with every attachment on Q.

BPQ: The set of bridges with attachments on both P and Q.

The next section begins with a outline of the O(| V || E |) time algorithm
of [O 80] for undirected graphs. Then we present our linear algorithm for
permutation graphs. Conclusions are offered in the last section.

3. The Two Disjoint Path Algorithm

Let G0 = (V0, E0) be a given general undirected graph. The two pairs of
vertices between which the disjoint paths have to be found are s1, t1 and
s2, t2. We assume that TPP is true if the two required vertex-disjoint paths
exist, otherwise it is false. Without loss of generality, we can assume that
G0 is bi-connected. The algorithm is outlined below in a sequence of steps.

Step 1. Find two disjoint paths between {s1, t1} and {s2, t2}. (This can be
performed by applying flow techniques [ET 75]). If no two disjoint paths are
found then TPP is clearly false. If two paths P1(s1, t1) and P2(s2, t2) are
found then TPP is trivially true. Hence non-trivially, we assume that two
paths P (s1, t2) and Q(s2, t1) are found and we proceed to the next step.

Step 2. Find all bridges B = (B1, B2, . . .) with respect to P ∪Q.

Step 3. If there exist three vertices a, b, c on P in this order and two
bridges Bi ∈ BPQ and Bj ∈ BP such that b ∈ Bi and a, c ∈ Bj, replace
the subpath P [a; c] of P so as to go through Bj as shown in Figure 4 and

152 C.P. Gopalakrishnan and C. Pandu Rangan

Figure 4. Elimination of B P . Note after elimination, the modified path P passes

through b.

A Linear Algorithm for the Two Paths Problem... 153

update the set B with respect to the new P. This operation is repeated
until no such pair of Bi and Bj exists. Perform the same operation for path
Q. Now make the paths P (Q) chordless and update BP (BQ). (This step
involves finding the ambitus and for a linear time algorithm and its efficient
implementation see [MT 89]).

Figure 5. Alternating pair of bridges.

Step 4. Discard all the bridges in BP and BQ. Henceforth we may assume
that all bridges belong to BPQ. If there exists an alternating pair of bridges,
then TPP is true. Otherwise go to the next step.

Step 5. If there is no eligible bridge in B then TPP is obviously false.
Discard all non-eligible bridges. For each eligible bridge B, let a and b

(c and d) be its attachments on P (Q) closest to s1 and t2 (s2 and t1),
respectively and G0(B) be the section graph. Now call the binary recursive
function f(G0(B), P [a; b], Q[c; d]) and let B← B− {B}. TPP is true if f

returns true and false if f returns false for every G0(B).

The following steps (Steps f1–f8) are performed in f(G′, P [a; b], Q[c; d]),
where G′ is a section graph and P,Q, a, b, c, d are as shown in Figure 6.
Here P is the top path and Q is the bottom path and a, b, c, d are the
endpoints of the section graph. Without loss of generality, G′ is assumed to
be bi-connected.

Step f1. Find a path P ′(a, b) which is disjoint with P [a; b] and Q[c; d].
Existence of P ′ is clear from the definition of bridge. We refer to P ′ as the
complementary path.

Step f2. Find all the bridges B′ = {B1, B2, . . .} with respect to P ∪Q∪P ′

by means of the same operation as in Step 3.

154 C.P. Gopalakrishnan and C. Pandu Rangan

Figure 6. Section graph G0(B).

Step f3. Perform the same operations as in Step 3 with respect to P ′, and
pertinently update the path P ′ and the set B′. Make P ′ chordless. Note
that each bridge must have an attachment on P ′ − {a, b} and another on
P ∪Q− {a, b}.

Step f4. If there exists a bridge Bi ∈ B′ having an attachment l ∈ P −
{a, b} and another attachment m ∈ Q, then return true, otherwise go to the
next step. This can be proved by recalling that Bi also includes another
attachment n ∈ P ′ − {a, b} and the bi-connectivity assumption. Figure 7
illustrates how to extract a desired pair of paths.

Step f5. Now we may assume that each bridge B ∈ B′ has either all the
attachments on P ′ ∪ Q or all of them on P ∪ P ′. The set of bridges of the
former (latter) type is denoted by BI (BII).
If there exists an alternating pair of bridges in BI , then return true. Other-
wise go to the next step.

Step f6. For each eligible bridge B ∈ BI call f(G′(B), P ′[a′; b′], Q[c′; d′]),
where a′ and b′ (c′ and d′) are the attachments on P ′(Q) closest to a and
b (c and d), respectively, and return true if f returns true. If f returns
false for every eligible bridge or if no eligible bridge exists, go to the next
step.

Step f7. Let x and y be attachments of bridges of BI closest to a and b on
P ′. (It is necesary that a, b, x, y are distinct). If there exists an alternating
pair of bridges Bi, Bj ∈ BII such that Bi has an attachment u ∈ P ′[x; b]−
{x, b} and Bj has an attachment v ∈ P ′[a; y] − {a, y}, then return true.
Otherwise go to the next step. The extraction of desired paths is illustrated

A Linear Algorithm for the Two Paths Problem... 155

in Figure 8. It should be noted here that some bridges of BI include two
disjoint paths M(x, c) and N(y, d).

Figure 7. Extraction of two paths in Step 3. The dotted lines indicate the two

paths.

Step f8. Let x and y be as in Step f7. For each bridge B ∈ BII having an
attachment u ∈ P ′[x; b]−{x, b} and another attachment v ∈ P ′[a; y]−{a, y},
perform the following operations, or if no such bridge exists return false.

If B has an attachment in P ′[a; x] − {a, x}, let a∗ ← a and x∗ ← x.

Otherwise let a∗(x∗) be the attachment on P (P ′) closest to a(x) and update
bridge B by discarding subpaths P [a; a∗] and P ′[a; x∗] except {a∗, x∗}. By
means of the same argument for P ′[y; b], we specify vertices b∗ and y∗

corresponding to a∗ and x∗, respectively.

Consider the section graph G′′ of G′ determined by the vertices of
P [a∗, b∗], P ′[x∗, y∗] and B. Call f(G′′, P [a∗, b∗], P ′[x∗, y∗]) and return true
if f returns true. If f returns false for every such bridge then return false.
The above algorithm consists of operations in the main routine (Steps 1–5),
which are performed once and those in the recursion procedure f (Steps
f1–f8). If we ignore recursion all steps are performed in O(| V | + | E |)
time. The depth of the recursive calls can be shown to be bounded by
O(| V |). We only consider the edges or vertices of graph G = (V,E) at the
first call of f, since the number of operations related to the other edges is
bounded by some constant. If an edge or a vertex of G′ belongs to a subgraph

156 C.P. Gopalakrishnan and C. Pandu Rangan

Figure 8. Extraction of two paths in Step 3. The dotted lines indicate the two

paths.

G′′ = (V ′′, E ′′) of G′ which is extracted in Step f6 or Step f8, then it is clear
that | V ′ |<| V | . Hence the number of such subgraphs including a specific
edge or vertex is of O(| V |), and so is the depth of recursive calls, which
implies that the whole algorithm runs in O(| V || E |) time.

4. The Linear Algorithm for Permutation Graphs

In this section we show that when the input graph is restricted to the class of
permutation graphs, we can bound the number of recursive calls to a constant
and hence the above algorithm becomes linear. First we state some lemmas.

For all the following lemmas it is assumed that the input graph G0 is a
permutation graph and hence the section graphs are permutation graphs as
well. In the general algorithm outlined in the previous section recursive calls
are made on section graphs constructed in Steps f6 and f8. In order to arrive
at a linear algorithm we have to eliminate recursive calls in these two steps.

Although we use the permuation diagram of the permutation graph ex-
tensively in the proofs to show the linear algorithm, we do not need the
permutation diagram to be given as input i.e., we do not require to run Spin-
rad’s transitive orientation algorithm initially as a preprocessing step. The
input of the permutation graph in the form of an adjacency list is adequate,
just like any other graph.

A Linear Algorithm for the Two Paths Problem... 157

We define the following special cases of section graphs which admit a
linear solution to the TPP. This will be proved later.

Definition 4.1. (See Figure 10). We call the section graphs which have their
top and bottom paths of length at most two as reduced cases. Let a′, b′, c′, d′

be the endpoints of the section graph. In particular, we define the following:

Reduced Case 1 (RC1): Section graph with top and bottom paths of length
one and a′ is adjacent to c′ and b′ is adjacent to d′.

Reduced Case 2 (RC2): Section graph with top and bottom paths of length
one and a′ is not adjacent to c′ and b′ is not adjacent to d′.

Reduced Case 3 (RC3): Section graph with only one of the top or bottom
path of length two and the other of length one.
Reduced Case 4 (RC4): Section graph with both top and bottom paths of
length two.

Our strategy now is to show that all the recursive subproblems (these sub-
problems are of solving the TPP on the section graphs) generated during the
general algorithm after a constant number of recursive calls fall under the re-
duced cases just defined which admit linear solutions. We give the following
lemma.

Lemma 4.1. Let P and P ′ be as defined in the recursive function f. Then
the inside vertices of the path P ′ should be adjacent to at least one vertex
belonging to V (P).

Proof. It follows directly from Lemma 2.1 and from the defintion of inside
vertices and from the fact that P and P ′ are chordless.

Lemma 4.2. Consider Step f6 of the recursive function f. After at most
two iterations the top path in the recursive call of this step has length at most
two.

Proof. Let P ′′ denote the path P ′[a; b] after one iteration, that is after
one call of f in step f6. We have to show that after one iteration the length
of P ′′ is at most two. If P ′[a; b] is of length one or two we are done, i.e., we
do not need another iteration.
In the first call of f in Step f6, P ′[a; b] is the top path of a section graph of
a bridge B ∈ BI . B, by defintion has all its attachments on P ′ ∪Q, where
P ′ is as defined in Step f1. In the next iteration, it is clear that P ′′ is the
path (the new P ′) which is found in Step f1. If P ′′ has length greater than

158 C.P. Gopalakrishnan and C. Pandu Rangan

two (recall that P ′ etc. are chordless), by Lemma 4.1, there would be an
inside vertex of P ′′ and this vertex will be adjacent to some vertex of P.

This violates the property that the bridge B belongs to of BI .

Corollary 4.2.1. After at most four iterations of the recursive function f ,
we have at Step f6 subproblems with the following property: all the section
graphs have top and bottom paths of length atmost two (Reduced cases).

Proof. After two iterations, by Lemma 4.2 we have reduced the length of
the top path to be at most two. We now interchange the top and bottom
paths for the next iteration and reduce the length of the bottom path as well.

Lemma 4.3. In Step f8 of the recursive function f all the subproblems fall
under the category of RC1.

Proof. It is clear that Steps f7 and f8 of f are performed only if there is a
negative result in Step f6, i.e., all the section graphs formed from the bridges
belonging to BI yield a negative result. In Step f7 presence of alternating
bridges are checked in BII . Step f8 is performed if there are no such alternat-
ing bridges. In particular there are no alternating chords in BII . This means
that we have to solve for TPP on section graphs which have their endpoints
(a′, b′, c′, d′) as follows:

• The endpoints form a 4-cycle. See Figure 9.
• a′, b′ belongs to P and c′, d′ belongs to P ′.

• Let x, y be as defined in Step f8. Then c′ ∈ P ′[x; b] − {x, b}, b ∈
P ′[a; y]− {a, y}.

From Definition 4.1 it is clear this type of section graph falls under RC1.

4.1. TPP on Reduced Cases of Section Graphs

For the sake of uniformity, we assume that a section graph GS is named as
follows: the top and bottom paths are called P and Q respectively with
endpoints a, b for P and c, d for Q. Below we give algorithms for solving
TPP on each of the reduced cases of section graphs. TPP is true for a
section graph if there exist two vertex-disjoint paths between a, d and b, c,

respectively.

A Linear Algorithm for the Two Paths Problem... 159

Figure 9. Non-alternating chords between P and P ′. The section graphs formed

from these fall under the Reduced Case 1 (RC1).

4.1.1. Reduced Case 1 (RC1)

Algorithm 4.1. begin

1) Find a shortest path M between a and d (not using the b and c vertices)
and a shortest path N between b and c.

2) If (M or N is of length 1) then return TPP is true.
/* M and N is of length ≥ 2 */
3) Find which of M or N is of length 2.
(/* Without loss of generality let M be of length 2 and x be its intermediate
vertex */)

3.1) If (x is a cut vertex between a and d) then
3.1.1) if (there exists a path between b and c with this vertex

excluded)
then return TPP is true.

3.1.2) else
return TPP is false.

3.2) else
3.2.1) if (N is of length 2)

then return TPP is true.
3.2.2) else
begin

3.2.2.1) Find bridges with respect to P ∪Q ∪N.

3.2.2.2) If (any bridge has a and d as its vertices of
attachment)

160 C.P. Gopalakrishnan and C. Pandu Rangan

then return TPP is true.
3.2.2.3) else
return TPP is false.

end

end

For proving the correctness of the above algorithm we state the following
lemma.

Lemma 4.4. Let M and N be as defined in Algorithm 4.1. If the length
of N is greater than 2 then the length of M should be at most 2 and vice
versa.

Proof. Let N = [b, x, y, c], i.e., of length 3. By Lemma 2.1, N forms a
5-cycle with d as well as a. Hence, at least there should be a chord in both
the 5-cycles. Since, N is chordless, the only possible chords are {x, d} (say
e1) or {y, d} (e2) for one cycle and {x, a} (e3) and {y, a} (e4) for the other.
But only e1 and e4 or e2 and e3 cannot exist as they give rise to a chordless
5-cycle. Hence, the presence of at least one of the two combinations ensures
that a path of length 2 exists between a and d. This can be similarly shown
for lengths of N greater than 3. Since M and N are complementary, the
lemma holds the other way also.

Corollary 4.4.1. Let the length of N be greater than 2. Then all inside
vertices of N have chords connecting both a and d. If N is of length 3, at
least one of the intermediate vertices will have the above property.

Lemma 4.5. Algorithm 4.1 correctly solves for TPP in RC1 in linear time
(O(| V | + | E |)).

Proof. In RC1, [a, b, d, c, a] form a 4-cycle. To solve the TPP, we have to
find two disjoint paths between a, d and c, b, respectively.

In Step 2, TPP is true since there exists a path between b and c. (Recall
that the section graph is eligible.)

By Lemma 4.4, it is clear that at least one of M or N should have a
length 2. Without loss of generality let it be M and let its intermediate
vertex be x. In Step 3.1 we check whether x is a cut vertex for a and d,
by checking whether there exists any other path between a and d excluding
this vertex. Obviously if this vertex is also a cutvertex for b and c, then
TPP is false, otherwise it is true.

A Linear Algorithm for the Two Paths Problem... 161

Figure 10. Reduced Cases of Section Graphs. In RC1 [a, b, c, d, a] form a 4-cycle.

RC2 is a general version of RC1. In RC3, only one of top or bottom paths is of

length two. In RC4 both the top and bottom paths are of length one.

In Step 3.2 x is not a cut vertex and hence if the length of N is also 2 we
have TPP to be true.

Step 3.2.2 handles the general case when the length of N is greater than
2. We find bridges with respect to P ∪Q ∪N. By Corollary 4.4.1 it follows
that Step 3.2.2.2 correctly yields the solution.

162 C.P. Gopalakrishnan and C. Pandu Rangan

We assume an adjacency list representation of SG. Steps 1, 2, 3 are all
trivial and can be implemented in a straightforward way in linear time. In
Step 4, for finding the bridges, we just check for connected components in
GS − P −Q−N and can be implemented in linear time.

Thus we have solved the TPP for RC1. RC1 is a fundamental case to which
the other Reduced cases will be reduced.

4.1.2. Reduced Case 2 (RC2)

The difference between RC1 and RC2 is, here there is no edge between both
a, c and b, d. As in the previous case, our aim is to find two disjoint paths
between a to d and b to c, respectively.

Algorithm 4.2. begin

1) Find two disjoint paths between {a, b} and {b, c}.
/* (We assume that two chordless paths M(a, c) and N(b, d) are found,
otherwise TPP turns out to be either true or false.) Obviously M and
N are not both of length 1, otherwise it boils down to RC1. Hence at
least one of them should be of length greater than 1. Or in other words
M(a, c).[c, d].N(b, d).[a, b] form a cycle C of length at least 5. */
2) Find bridges with respect to P ∪Q ∪M ∪N.

If (there exists alternating bridges between M and N) then return TPP
is true.
3) Find the set of chords of cycle C. /* These set of chords of C divides the
cycle into 4-cycles and 3-cycles. */ Solve for TPP for each eligible section
graph which has endpoints in a 4-cycle. TPP is true if at least one of them
returns true.
end

Lemma 4.6. Algorithm 4.2. correctly solves for TPP in RC2 in linear time.

Proof. Let us assume that alternating bridges do not exist between M

and N. In particular no alternating chords exist. Hence the set of chords
of C divides the cycle into 4-cycles and 3- cycles which are subcyles within
C. Now obviously, TPP is true only if its true for atleast one eligible section
graph which has its endpoints in one 4-cycle. But this is nothing but a RC1
problem which can be solved in linear time. Subgraphs which are within
3-cycles need not be considered as they do not give rise to an eligible section
graph.

A Linear Algorithm for the Two Paths Problem... 163

Step 1 can be peformed in linear time in the same way as Step 3 of the
general algorithm by applying flow techniques [ET 75]. In Step 2, checking
for alternating bridges can also be done in linear time as in Step 3 of the
general algorithm. In [O 80] this step is viewed as part of the linear planarity
test algorithm of [HT 74]. The time taken for Step 3 is also linear because
time taken for a RC1 problem is linear and an edge of the original graph
is considered at most once, by the obvious property of bridges. Hence the
whole algorithm is linear.

4.1.3. Reduced Case 3 (RC3)

In RC3, one of the top or bottom paths is of length two and the other is of
length one. We assume that P is of length 2 and Q is of length one.

Lemma 4.7. Consider a RC3 subproblem. Let the length of P be two and
that of Q be one. Then a shortest path from a to b is of length 2.

Proof. Follows from the fact that RC3 is a subproblem generated by the
recursive function f at Step f6 and from Lemma 4.2.

Lemma 4.8. Consider a RC3 subproblem. Let the length of P be two and
that of Q be one. Let the set P = {P1, P2, . . .} represent the set of all
vertex-disjoint shortest paths from a to b. Then P is the set of only possible
chordless paths and the length of each Pi is two.

Proof. Follows from the previous lemma.

Lemma 4.9. Consider a RC3 subproblem. Let P,Q,P be as defined above.
Let B be the set of bridges with respect to P∪Q. Then there exist no bridge
in B with attachments to both a and b.

Proof. Follows from the previous lemma.

Lemma 4.10. Consider a RC3 subproblem. Let P be as defined above.
Since the length of each path is of length two, let the intermediate vertex of
a path Pi be pi. Let B be the set of bridges with respect to P ∪Q. If there
exists two bridges such that one has an attachment on pi and c and the
other on pj and d, then TPP is true.

Proof. Easy.

Lemma 4.11. Let P, B be as defined previously. Also let the intermediate
vertex of a path Pi be pi. Let there exist a bridge with attachments on c,

164 C.P. Gopalakrishnan and C. Pandu Rangan

d, pi and pj, two different intermediate vertices. Then TPP is true if there
exists two vertex-disjoint paths in this bridge from {pi, pj} and {c, d}.

Proof. Easy.

Lemma 4.12. Let P, B be as defined previously. Let there exist a bridge
with attachments on c, d and two attachments on the same path Pi (It has
to either a and pi or pi and b). Then TPP is true if its true on the section
graph formed from this bridge.

Proof. Easy.

Remark 4.1. By the lemma just stated, we have succeeded in reducing the
RC3 problem to a RC2 problem, because the length of both the top and bottom
paths is one.

Algorithm 4.3. begin

1) Find the set of all vertex-disjoint shortest paths from a to b. Let it be
P = {P1, P2, . . .}. Let the intermediate vertices of a path Pi in P be pi.

2) Find the set of bridges with respect to P ∪Q. Let it be B.

3) If there exists two bridges in B such that one has an attachment on
pi and c and the other on pj and d, where pi and pj are two different
intermediate vertices, then return TPP is true.
4) Find all bridges in B with attachments on c, d, and pi, pj, two different
intermediate vertices. If there exists two vertex-disjoint paths in such a
bridge from {pi, pj} and {c, d} then return TPP is true.
5) Find all bridges with attachments on c, d and two attachments on the
same path Pi. If TPP is true on the section graph formed from any one such
bridge then return TPP is true.
end

Lemma 4.13. Algorithm 4.3 correctly solves for TPP in RC3 in linear time.

Proof. The correctness follows from the lemmas stated before the algo-
rithm.

The algorithm like the algorithms for RC1 and RC3 can be easily im-
plemented in linear time. Step 1 can be solved easily in linear time because
the length of each shortest path is only two. Step 3 can be implemented
in a way similar to that of finding alternating bridges. Step 4 is easy. In
Step 5, the problem is reduced to that of a RC2 and the linearity of this step
is guaranteed because each edge is present in only one of the subproblems.

A Linear Algorithm for the Two Paths Problem... 165

4.1.4. Reduced Case 4(RC4)

As stated in Remark 4.1, we reduced the length of the top path to one and
hence an RC2 subproblem resulted from an RC3. In a RC4 problem where
the length of both P and Q is two, after reducing the top path to one, we
interchange top and bottom paths to get a RC3 subproblem.

Thus we have succeeded in solving the TPP on the Reduced cases by
reducing one problem to a smaller one. That is RC4 is reduced to RC3
which in turn was reduced to RC2, which was in turn reduced to RC1.

5. Conclusion

General graphs require O(| V | ⋆ | E |) time for the TPP. Chordal graphs
and planar graphs admit linear time solutions. We have shown now that
permutation graphs too admit a linear time solution to the TPP. The main
difficulty in deriving a linear time algorithm comes with handling different
levels of recursion. We have successfully eliminated the recursion by referring
to the special properties of permutation graphs. Thus by exploiting some
structural properties of a certain restricted class of graphs we have obtained
efficient algorithms tailor-made for that class.

It would be interesting to study whether comparability or co-comparabi-
lity graphs — both supersets of permutation graphs, have linear algorithms
for TPP. We feel that this general approach can be used for solving this
problem on these classes of graphs also.

References

[BM 76] J.A. Bondy, U.S.R. Murthy, Graph Theory with Applications (Academic
Press, 1976).

[ET 75] S. Even, R.E. Tarjan, Network flow and testing graph connectivity, SIAM J.
Comput. 4 (1975) 507–518.

[HT 74] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974)
549–568.

[G 80] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic
Press, 1980).

[MT 89] B. Mishra, R.E. Tarjan, A linear time algorithm for finding an ambitus
(Technical Report 464, August 1989, New York University).

166 C.P. Gopalakrishnan and C. Pandu Rangan

[O 80] T. Ohtsuki, The two disjoint path problem and wire routing design, In: Proc.
of the 17th Symp. of Res. Inst. of Electrical Comm. (1980) 257–267.

[PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices

in a graph, J. of the ACM 25 (1978) 1–9.

[RP] P.B. Ramprasad, C. Pandu Rangan, A new linear time algorithm for the two
path problem on planar graphs (Technical Report, Department of Computer
Science, IIT, Madras, 1991).

[S 80] Y. Shiloach, A polynomial solution to the undirected two paths problem, J.
of the ACM 27 (1980) 445–456.

[S 83] J. Spinrad, Transitive orientation in O(n2) time, In: Proc. of Fifteenth
ACM Symposium on the Theory of Computing (1983) 457–466.

[KPS 91] S.V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two Disjoint
Paths in Chordal graphs (Technical Report, 2/91, February 1991, University
of Oldenburg, Germany).

Received 9 May 1994

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

