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Abstract

Disjoint paths have applications in establishing bottleneck-free
communication between processors in a network. The problem of find-
ing minimum delay disjoint paths in a network directly reduces to the
problem of finding the minimal disjoint paths in the graph which mod-
els the network. Previous results for this problem on chordal graphs
were an O(| V | | E |2) algorithm for 2 edge disjoint paths and an
O(| V | | E |) algorithm for 2 vertex disjoint paths. In this paper,
we give an O(| V | | E |) algorithm for 2 vertex disjoint paths and
an O(| V | + | E |) algorithm for 2 edge disjoint paths, which is a
significant improvement over the previous result.
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1. Introduction

Disjoint path problems have applications in establishing communication be-
tween processors in a network. In fact, the problem of finding minimal delay
communication paths directly reduces to the problem of finding the corre-
sponding minimal disjoint paths in the underlying network. We may state
the minimal disjoint path problem as follows:

Given an undirected graph G = (V,E) and two pairs of vertices s, t and
u, v (all distinct) we seek two vertex/edge disjoint paths between each pair
such that they are minimal paths between these pairs.
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In this paper, we solve the above problem on chordal graphs (also called
triangulated graphs), a class of perfect graphs. For characterizations and
properties of chordal graphs refer [G 80].

The problems concerning minimal disjoint paths have attracted very lit-
tle attention so far. Some partial results have been obtained by Schwill [S 89,
S 90]. But research on these problems for paths without length constraints
has been done so far. An O(| V | | E |) algorithm for the two vertex dis-
joint paths problem for a general undirected graph was given by Shiloach [S
80] and Ohtsuki [O 80]. The more general n disjoint path problem, i.e. the
problem to decide, given a graph and n pairs of vertices, whether the graph
contains n pairwise vertex disjoint paths each one connecting a single pair
of vertices was shown to be NP-complete by Karp [K 75]. However, if n

is fixed, Robertson and Seymour [RS 86] give an algorithm which runs in
O(| V |2 | E |) steps. The algorithm is, however unpractical due to a
leading constant (hidden by the ‘big O’) of horrible size.

The two paths problem on chordal graphs i.e., finding two vertex/edge-
disjoint paths, without any length constraints has been shown to admit a
linear algorithm ([PS 78], [KPS 91]). But there is no known polynomial
algorithm for the general n disjoint path problem even when restricted
to chordal graphs except the complicated and unpractical Robertson and
Seymour algorithm.

As far as our problem is concerned (minimal disjoint problem) the earlier
known polynomial time results are by Schwill [S 80] who gave an O(| V |
| E |2) algorithm for finding 2 minimal edge disjoint paths on a chordal
graph. He also claims an O(| V | | E |) algorithm for the vertex disjoint
case, crucially based on a result which appears to be inadequate. In this
paper, following a new approach, we present an O(| V | | E |) algorithm
for finding 2 vertex disjoint paths, and an O(| V | + | E |) algorithm
for finding 2 edge disjoint paths in a chordal graph, which is a significant
improvement over the results in [S 89].

2. Preliminaries

A path P of length n is an ordered sequence of (n + 1) distinct vertices
v0, v1, . . . , vn such that (vi, vi+1) ∈ E, for all 0 ≤ i < n. For subpaths
we use square brackets and specify the end vertices. ‘[’ and ‘]’ denote the
inclusion of left and right end vertices in the subpath respectively and ‘]’
and ‘[’ denote their exclusion. For example, P [v0, v2] specifies the subpath
[v0, v1, v2] and P ]v0, v4[ specifies the subpath [v1, v2, v3]. The operation ‘.’
concatenates two internally disjoint paths at a common end vertex. A path
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P [x, y] is said to be minimal in G if no other path P ′[x, y] has length less
than P [x, y].

Definition 2.1. Let G = (V,E) be a chordal graph. Let s, t, u, v be
the four given vertices. Consider the bfs tree rooted at s. Let t occur in
the kth level of the bfs tree (i.e. d(s, t) = k). In this tree, a vertex x

is said to lie between s and t iff there is a minimal path between s and
t which passes through x. That is, x is said to lie between s and t iff
d(s, x) + d(x, t) = d(s, t).

Let G′ = (V ′, E′) be the graph induced by the vertices which lie between
s and t . Define

S(i) = {x | x ∈ V ′ and d(s, x) = i}, 0 ≤ i ≤ k.

Similarly, if d(u, v) = l, we get the graph G′′ = (V ′′, E′′) and U(j), 0 ≤
j ≤ l, from the bfs tree rooted at u. From the definition, it is obvious that
the S’s and U ’s correspond to different levels in the respective bfs trees.
Refer to Figure 1.

Lemma 2.1. If x ∈ S(i) (or U(i)) and y ∈ S(j) (or U(j)), with i < j,

and if there is a path [x = x0, x1, . . . , xr−1, y = xr], where r = j − i then
there is a shortest path from s to t (or u to v ) containing all the vertices
x0, x1, . . . , xr.

Proof. The path is simply constructed by taking the minimal paths
from s to x and y to t and concatenating them to get the path
P [s, x].[x0, x1, . . . , xr−1].P [y, t]. It can be easily verfied that the length of
this path adds up to d[s, t] and hence is minimal. Similarly the other part
of the lemma can be proved.

Corollary 2.1.1. If x ∈ S(i) and y ∈ S(j), with i < j, and if there is a
path [x = x0, x1, . . . , xr−1, y = xr], where r = j− i, then xf ∈ S(i+f) and
hence xf ∈ S, 0 ≤ f ≤ r − 1.

Lemma 2.2. Each S(i), 0 ≤ i ≤ k, is a clique. Similarly each U(j),
0 ≤ j ≤ l, is a clique.

Proof. Follows from the fact that G′ (respectively G′′) is a chordal graph
and that each S(i) (respectively U(j)) is a minimal vertex separator.
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Figure 1. The sets S(1) to S(k − 1) are the sets of vertices which lie between s

and u at various levels.

Corollary 2.2.1. If x ∈ S(i) (or U(j)) and y ∈ S(i + r) (or U(j + r)),
then d(x, y) = r or (r + 1).

Proof. d(x, y) ≥ r, because the shortest path should at least be of length
r (S(i) and S(i+1) are levels of a bfs tree). d(x, y) ≤ r+1 because there is
some vertex z ∈ S(i) such that d(z, y) = r, and since each S(i) is a clique,
d(x, z) ≤ 1. So, d(x, y) ≤ d(x, z) + d(y, z) ≤ r + 1.

Corollary 2.2.2. If x ∈ S(i) and y ∈ S(i + r) and d(x, y) = r + 1, then
there is a shortest path x = x0, x1, . . . , xr, y = xr+1 such that x0 and x1
belong to S(i) (A similar corollary may be stated for U).

Definition 2.2. Let S = ∪0≤i≤kS(i) and U = ∪0≤j≤lU(j). We call S (U)
as a strand.

If S ∩ U = ∅, any minimal path between s and t, and any minimal path
between u and v will not have any vertices/edges in common. Thus the
problem is trivially solved. So, from now on we will consider graphs where
S ∩ U 6= ∅.
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Consider, S ∩ U(j), for some j. These vertices, should either belong
to a single set S(i) or two consecutive sets, S(i) and S(i + 1) for some i.
This follows directly from the facts that each U(j) is a clique and the end
vertices of an edge can either be in two consecutive S(i)’s or, in the same
S(i). Based on the above observation, we classify the U(j)’s into three
classes, namely (refer to Figure 2.)

• Type ZERO U(j), such that U(j) ∩ S = ∅.

• Type ONE U(j), such that U(j) ∩ S is a subset of S(i), for some i.

• Type TWO U(j), such that U(j) ∩ S is a subset of S(i) ∪ S(i+ 1),
for some i, and it is neither a subset of S(i) nor a subset of S(i+1).

Type ONE and Type TWO can further be subdivided into subtypes, A or B
depending on whether U(j) = S ∩ U(j) or not. Note, that similarly S(i)’s
can be classified with respect to U .

Lemma 2.3. The vertices in U(i) can be linearly ordered (numbered) as
x1, x2, . . . , xk, where k =| U(i) |, such that N(xj , U(i + 1)) is a subset of
N(xj+1, U(i + 1)) for each 1 ≤ j ≤ k, where N(x, U(i + 1)) denotes the
neighbourhood of x in U(i+ 1).

Proof. We construct such a linear order of vertices. Find N(xt, U(i+ 1))
∀xt ∈ U(i). Arrange the xt’s in linear order (say nondecreasing) according to
the cardinality of N(xt, U(i+1)) . We claim that this is the required order.
If not let xk violate the order at k, i.e. N(xk, U(i+1)) 6⊃ N(xk−1, U(i+1)).
Now consider the 4-cycle xk, xk+1, y, z where y and z are neighbours of
xk and xk−1 in U(i + 1). Further y is not a neighbour of xk−1 and z

is not a neighbour of xk, because of the non-superset claim (which implies
the presence of such a y and z ((y, z) ∈ E in view of Lemma 2.2 in the
respective neighbourhood sets of xk and xk−1 in U(i + 1)) . Now, by the
triangulation property we arrive at a contradiction.

Corollary 2.3.1. There is at least one vertex in U(i) which is adjacent to
all vertices in U(i+ 1). This is called the special vertex.
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Figure 2. Different types of U(j).

Proof. It is clear that the cardinality of the highest numbered vertex in
the linear order is | U(i+ 1) |.

By symmetry there exists at least one special vertex in U(i + 1) which is
adjacent to all vertices in U(i). This is called the upward special vertex and
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the former is called the downward special vertex.

Definition 2.3. The Projection of a vertex x ∈ U(i) (denoted by Proj(x))
over the level U(j) is defined to be the set of vertices in U(j) which are
accesible to x in the shortest possible distance. By generalizing Lemma 2.3
it follows that in level U(j) the projections of x1, x2, . . . , xk (these ver-
tices belong to U(i)) obey the same superset property (i.e) Proj(x1) ⊂
Proj(x2) ⊂ · · · ⊂ Proj(xk). The projection of a set of vertices of a level
on a different level is the union of individual projections. Projection can be
upward or downward.

Lemma 2.4. If S(p1) ∩ U 6= ∅ and S(p1 + q1) ∩ U 6= ∅ for some p1 and
q1, then S(i) ∩ U 6= ∅, for all p1 < i < (p1 + q1).

Proof. Assume the contrary. Then there exists an integer r, such that
p1 < r < (p1 + q1) and S(r) ∩ U = ∅ . Let p be the greatest integer such
that p < r, and S(p) ∩ U 6= ∅. Similarly let q be the least integer such
that (p + q) > r and S(p + q) ∩ U 6= ∅. It is easily seen that for every i1,
p < i1 < (p+ q), (Si1) ∩ U = ∅.
Now, let U(j1) be one of the sets such that U(j1) ∩ S(p) 6= ∅ and U(j2)
be one such that U(j2) ∩ S(p + q) 6= ∅. Let x ∈ U(j1) ∩ S(p) and y ∈
U(j2) ∩ S(p+ q). By Corollary 2.2.1, d(x, y) is either q or q + 1.
If d(x, y) = q, then | j1− j2 | must be either q or q− 1 by Corollary 2.2.1.
If | j1 − j2 | is q, then the path [x0 . . . xq] of length q constructed by
Corollary 2.2.2 will make each xi ∈ S(p + i) and also U(j1 + i). If it is
(q−1) then the path [x, x1, x2 . . . , xq−1, y] connecting x, y in G′′ makes each
xi ∈ S(p + i), for 0 < i < q (by Lemma 2.1). Thus, we have contradicted
the assumption that S(p+ i) ∩ U = ∅.
If d(x, y) = q+1, consider two shortest paths (both of length q+1), one in
G′ and the other in G′′. Let these paths be x = x0, x1, x2, . . . , xq, y = xq+1

and x = y0, y1, y2, . . . , yq, y = yq+1, respectively. Here x0 and x1 are chosen
to be in the same level in G′ (Corollary 2.2.2). Since d(x, y) = q + 1,
| j1− j2 | must be either q or q + 1 by Corollary 2.2.1. If | j1− j2 | is
q + 1, then the path in G′ with length q + 1 makes xi ∈ U (0 < i < q + 1)
(Lemma 2.1), and contradicts the assumption. Otherwise, if | j1− j2 |= q,
then we can choose the path in G′′ such that y0 and y1 belong to the
same level (Corollary 2.2.2). Now, these two paths form a cycle in the
induced graph of the union of vertices in G′ and in G′′. Since both are
shortest paths, there is no chord between two vertices in the same path. So,
the only possible chords are of the types (xi, yi) or (xi, yi+1) or (xi+1, yi)
for 0 < i < q + 1 (chords like (xi, yi+2) etc. violate the shortest path
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property). Also all the chords cannot be of the first type only, since it still
leaves the chordless 4-cycle (xi, yi, yi+1, xi+1, xi). Thus there is at least one
chord that is not of the first type for every i. Let it be (xi, yi+1). Now,
the path [x = x0, . . . , xi, yi+1, . . . , yq+1 = y] has length q+1. Therefore, by
Lemma 2.1, each xj , 0 < j ≤ i belongs to U, giving a contradiction again.

The above lemma shows that if U ∩ S 6= ∅, then the U ’s which intersect S

form a contiguous subsequence of U(0) . . . U(l), say U(a) . . . U(b). Similarly,
the S’s which intersect U form a contiguous subsequence.

Definition 2.4. U(j) is said to be intersecting if U(j) ∩ S(i) 6= ∅. If the
sequence of U ’s which intersects S is U(a)..U(b), and if the sequence of S’s
which intersects U is S(c)..S(d), such that U(a) intersects S(c) and U(b)
intersects S(d), then the sequences are said to be in the same direction if
(d− c)(a− b) ≤ 0.

From now on we assume that the sequence of intersecting U ’s are in the
same direction as a minimal path from s to t. If this is not so, i.e. U(a)
intersects S(d) and U(b) intersects S(c), then we can simply interchange
the labels of u and v to get the required proper order.

Let xa ∈ U(a), yb ∈ U(b), xc ∈ S(c), yd ∈ S(d). If there are paths
P [xa, yb], Q[xc, yd] such that P and Q are vertex/edge disjoint and min-
imal, then they can be extended to get vertex/edge disjoint paths between
s, t and u, v.

Based on the structure of intersection of S and U we identify two types
and treat each one of them separately initially. The intersection is said to be
a C1-type intersection if it contains at least one U of type TWO otherwise
it is said to be of C2–type. First we consider C1-type.

3. C1-type Intersection

Lemma 3.1. If there are i, j such that S(i) ∩ U(j) 6= ∅ and S(i + 1) ∩
U(j + 2) 6= ∅ then U(j + 1) is of type TWO.

Proof. By Lemma 2.4, U(j + 1) ∩ S 6= ∅. Since there are edges between
U(j) and U(j+1), U(j+1) can only intersect with S(i−1), S(i), S(i+1).
Since there are edges between U(j + 1) and U(j + 2), U(j + 1) can ony
intersect with S(i+1), S(i), S(i+2). Thus the common sets are S(i), S(i+1).
We now show that U(j+1) intersects both (i.e. it is type TWO). Consider
x ∈ (S(i) ∩ U(j)) and y ∈ (S(i + 1) ∩ U(j + 2)). x is adjacent to at least
one vertex in S(i+1) say z. z 6= y, because there can be no edge from any
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vertex in U(j) to any vertex in U(j+2). Similarly, there is an edge (w, y),
w ∈ S(i), w 6= x. Also (y, z) is an edge because S(i+1) is a clique. Thus we
can now use the path [x, z, y] and prove (by Lemma 2.1) that z ∈ U(j+1).
Similarly w ∈ U(j+1). Hence both U(j+1)∩S(i) and U(j+1)∩S(i+1)
are non-empty.

Lemma 3.2. If there is at least one U of type TWO (say U(j)) then
1. if U(j + 1) is of type ONE, j + 1 is the greatest integer r such that
U(r) ∩ S 6= ∅.
2. if U(j − 1) is of type ONE, j − 1 is the least integer r such that
U(r) ∩ S 6= ∅.

Proof. (1) Assume the contrary. By Lemma 2.4, if there is an integer r

greater than j+1, such that U(r)∩S 6= ∅, then U(j+2)∩S 6= ∅. Let U(j)
intersect S in S(i) and S(i + 1) (because U(j) is of type TWO). Now,
U(j + 1) must intersect S(i) or S(i+ 1) because it is type ONE. Without
loss of generality, let it intersect S(i + 1). Since there are edges between
U(j +1) and U(j +2), the latter can intersect S only in S(i) or S(i+1)
or S(i + 2). But it can neither intersect S(i) nor S(i + 1) because then
there would be an edge between U(j) and U(j+2). Hence, U(j+2) should
intersect S(i + 2). This along with the fact that U(j) ∩ S(i + 1) 6= ∅ and
Lemma 3.1 implies that U(j+1) should be of type TWO, which contradicts
the assumption that it is of type ONE.
(2) The proof of this part is similar to proof of (1).

Corollary 3.2.1. If there is a U of type TWO, then a U of type ONE
cannot be inbetween other intersecting U ’s and also at most one U of type
ONE can be at the ends of the sequence of U ’s which intersect S. That is if
there is a U of type TWO and if U(a) . . . U(b) is the sequence of intersecting
U ’s only U(a) or U(b) or both can be of type ONE.

Proof. Follows directly from Lemma 3.2.

Lemma 3.3. If there exist i, j such that S(i)∩U(j) 6= ∅, S(i)∩U(j+1) 6= ∅
and S(i + 1) ∩ U(j) 6= ∅ and S(i + 1) ∩ U(j + 1) 6= ∅ then, U(r) ∩ S = ∅
for all r satisfying 0 ≤ r < j and j + 1 < r ≤ l.

Proof. Let if possible U(r) ∩ S 6= ∅ for some r > (j + 1). This implies
(by Lemma 2.4) that U(j +2)∩S 6= ∅. Since U(j +1) intersects S(i) and
S(i+ 1), this implies that U(j + 2) should intersect at least one of S(i) or
S(i+1). If it intersects S(i), it implies that there is an edge between U(j)
and U(j+2), because both have some vertices common with S(i) and S(i)
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is a clique. Again if U(j + 2) intersects S(i + 1), then S(i + 1) intersects
U(j), U(j + 1), U(j + 2) which is not possible. So, we get a contradiction
in both ways.

Definition 3.1. (Refer Figure 2) Let U(j) be of type TWO and let it
intersect the S’s at S(i) and S(i+1). Define HIGH (U(j)) = (U(j)∩S(i))
and LOW (U(j)) = (U(j) ∩ S(i + 1)). For a U(j) of type ONE which
intersects S(i), HIGH(U(j)) = LOW (U(j)) = U(j) ∩ S(i). For a U(j) of
type TWO-B or ONE-B, we define MID(U(j)) = U(j)\(U(j)∩S) (the part
which is not in common with S). For type A’s MID(U(j)) = ∅. We define
COM(U(j)) = U(j)\MID(j) (the common part). Similar definitions can
be given for S(i)’s with respect to U .

Definition 3.2. Let U(a) intersect S(i) and S(i+ 1) if it of type TWO,
else let it intersect S(i + 1) if it is of type ONE. We call the sequence
U(a) . . . U(b), a TWO-chain if

1. Each U(j), a < j < b, is of type TWO and U(a), U(b) are each type
ONE or TWO.
2. Each U(j), a < j < b, intersects S(i+ j− a) and S(i+ j− a+1). U(b)
intersects S(i + b − a). It also intersects S(i + b − a + 1) if it is of type
TWO (Refer to Figure 3).

Lemma 3.4. In a C1-type intersection, if there are more than two U ’s
which intersect S then they form a TWO-chain. (By symmetry a similar
lemma can be stated for S’s.)

Proof. Let the intersecting U ′s be U(a) . . . U(b). First take the case when
there is only one U of type TWO. Thus the other U ’s which intersect should
be type ONE. But Corollary 3.2.1 implies that there should be exactly two
U ’s and they must be U(a) and U(b) (where b = a + 2). Further, U(a)
and U(b) should be of type ONE and U(a + 1) should be of type TWO.
Let U(a+1) intersect S in S(i+1) and S(i+2). This implies that U(a)
intersects S(i + 1) and U(b) intersects S(i + 2). Thus the 3 U ’s form a
TWO-chain.



Efficient Algorithms for Minimal Disjoint... 129

Figure 3. A TWO-chain.

Now consider the case when there are at least 2 U ’s of type TWO. Take
the least j such that U(j) ∩ S 6= ∅ and U(j) is of type TWO. From
Corollary 3.2.1, j = a or a+1. Let U(j) intersect S in S(i) and S(i+1)
for some i. By Corollary 3.2.1, U(j + 1) is of type TWO. Then U(j + 1)
must intersect S(i − 1) and S(i) or S(i + 1) and S(i + 2) (it cannot
intersect S(i) and S(i+ 1) because of Lemma 3.3). It intersects S(i+ 1)
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and S(i+2), because we have assumed that the S’s and U ’s are in the same
direction (see Definition 2.4). Now, U(j + 2) can only intersect S(i + 2)
and S(i+ 3). This is because it can neither intersect S(i) nor S(i+ 1) (as
U(j) intersects both of these). Thus we see by an easy extrapolation that if
U(e) is of type TWO, then it intersects S(e− j + i) and S(e− j + i+ 1).
Also let S(d − 1) and S(d) which are intersected by the set U(f) where
f is the largest integer such that U(f) is of type TWO. If U(a) is of type
ONE, we can see that it should intersect S(i) and similarly U(b) should
intersect S(d). Thus the sequence forms a TWO-chain.

Thus we see that C1-type intersection can be further classified into:

Type C1.1: There is only one intersecting U of type TWO.

Type C1.2: There are two intersecting U ′s.

Type C1.2.1: Both the U ′s are of type TWO.

Type C1.2.2: One of type TWO U and the other is of type ONE.

Type C1.3: There are more than two intersecting U ′s forming a TWO-chain

First we give lemmas which takes care of the trivial cases: C1.1 and C1.2.

Lemma 3.5. Let there be a C1.1-type intersection in G and let the only
intersecting U(j) of type TWO intersect S(i) and S(i+ 1). Then

1. Edge-disjoint paths exist.

2. Vertex disjoint paths exist iff at least one of the conditions given below is
true:

(a) U(j) is of type TWO-B.

(b) | S(i) |> 1 or | S(i+ 1) |> 1.

Proof. (1) Take any vertex x ∈ S(i). A shortest path from u to v which
is of the form [u . . . x].[x . . . v] can share only one vertex with any shortest
path from s to t. Thus the path [u . . . x].[x . . . v] and any path from s to
t are the required edge-disjoint paths.

(2a) Take any vertex x ∈ MID(U(j)). The path [u . . . x].[x . . . v] and
any shortest path form s to t will not have any vertex in common (x does
not belongs to S).

(2b) Take a vertex x ∈ HIGH(U(j)) and another vertex y ∈ S(i).
Then the shortest paths [u . . . x].[x . . . v] and [s . . . y].[y . . . t] are vertex-
disjoint.

Definition 3.3. The type C1.2.1 further consists of two types which are

C1.2.1.1: The two interesting U ′s intersect S(i) and S(i+ 1).

C1.2.1.2: The two intersecting U ′s intersect S(i), S(i+ 1) and S(i+ 2).
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Lemma 3.6. Let there be a C1.2.1.1-type intersection in G and let the two
U ′s be U(j) and U(j + 1) and the S′s which intersect them be S(i) and
S(i+ 1). Then

1. Edge-disjoint paths exist.

2. Vertex-disjoint paths exist iff one of the following is true

(a) | S(i) |> 2 or | S(i+ 1) |> 2.

(b) At least one of U(j), U(j + 1) is of type TWO-B.

(c) if x, y ∈ S(i) and z, w ∈ S(i + 1) and x,w ∈ U(i) and y, z ∈
U(i+ 1), then (x, z) and (y, w) are edges.

Proof. Similar to Lemma 3.5.

Lemma 3.7. If U(j) and U(j+1) are of type TWO, and if U(j) intersects
S(i) and S(i+1) and U(j+1) intersects S(i+1) and S(i+2), then every
vertex in HIGH(U(j)) is adjacent to some vertex in HIGH(U(j+1)) and
every vertex in LOW (U(j+1)) is adjacent to some vertex in LOW (U(j)).

Proof. First let us assume that U(j + 1) is of type TWO-A. Since every
vertex in HIGH(U(j)) is adjacent to some vertex in U(j + 1), it must be
adjacent to either a vertex in HIGH(U(j + 1)) or LOW (U(j + 1)). But it
cannot be adjacent to a vertex in LOW (U(j+1)), because this would mean
that there is an edge between S(i) and S(i + 2) which is not possible. So
it should be adjacent to some vertex in HIGH(U(j + 1)).

Now consider the case that U(j + 1) is of type TWO-B. As said above,
a vertex in HIGH(U(j)) cannot be adjacent to a vertex in LOW (U(j+1)).
Thus it can only be adjacent to a vertex in HIGH(U(j+1)) or MID(U(j+
1)). Suppose it is adjacent to a vertex in MID(U(j + 1)). Let (x, y)
be that edge. Since U(j + 1) is a clique, y is adjacent to all vertices in
LOW (U(j + 1)), in particular to a vertex z (which exists since U(j + 1) is
of type TWO). Now consider the path of [x, y, z] of length 2. Now, x ∈ S(i)
and z ∈ S(i + 2) and Lemma 2.1 imply that y ∈ S(i + 1), a contradiction
to the fact that y does not belong to S. Thus even in the case a vertex in
HIGH(U(j)) can only be adjacent to a vertex in HIGH(U(j + 1)). The
proof of the other part of the lemma is similar to the proof given above.

Lemma 3.8. Let there be a C1.2.1.2-type intersection in G and let the
two U ′s be U(j) and U(j + 1), and let them intersect S(i), S(i + 1) and
S(i + 1), S(i + 2), respectively. According to Lemma 3.7 there exist edges
between HIGH(U(j)) and HIGH(U(j+1)) and between LOW (U(j+1))
and LOW (U(j)), let these edges be (x, y) and (w, z), respectively, where
x ∈ S(i), y, z ∈ S(i+ 1) and w ∈ S(i+ 2). Then



132 C.P. Gopalakrishnan, C.R. Satyan and C. Pandu Rangan

1. Edge-disjoint paths exist.
2. Vertex-disjoint paths exist iff one of the following conditions hold

(a) At least one of U(j) and U(j + 1) is of type TWO-B.
(b) | S(i+ 1) |> 2.
(c) There is at least one vertex in S(i) which is not x (say d) and

which is adjacent to z or there is at least one vertex in S(i + 2) which is
not w (say c) and which is connected to y.

Proof. Similar to Lemma 3.5.

Lemma 3.9. Let there be a C1.2.2-type intersection in G. If U(j) is of
type ONE which S(i) and S(i+ 1), then
1. Edge-disjoint paths exist.
2. Vertex-disjoint paths exist iff one of the following conditions is true

(a) At least one of U(j) and U(j + 1) is of type TWO-B.
(b) | S(i) |> 2.
(c) There are two edges (x, y), (z, w) with x, y, z, w all different such

that x ∈ LOW (U(j)), y ∈ LOW (U(j + 1)), z ∈ HIGH(U(j + 1)) and
w ∈ S(i+ 1).

Proof. Similar to Lemma 3.5. Note that a similar result holds when U(j)
is of type TWO and U(j + 1) is of type ONE.

Lemma 3.10. Let U(a) . . . U(b) be a sequence of U ′s forming a TWO-
chain. For any j < b − 1, let U(j + 1) intersect S(i) and S(i + 1) for
some i. Then every vertex in LOW (U(j)) is adjacent to every vertex in
LOW (U(j + 1)).

Proof. Since U(j+1) is neither the first nor the last set of the TWO-chain
it should be of type TWO. Since the U ′s form a TWO-chain, U(j) should
intersect S(i). Take any vertex x ∈ LOW (U(j)). This vertex is also a
member of S(i). Thus it is adjacent to some vertex in S(i+1), say y. This
y cannot belong to U(j+2) (which exists, because U(j+1) is not the last
U in the TWO-chain). Let z ∈ HIGH(U(j + 1)). Since U(j + 2) belongs
to a TWO-chain, z should belong to S(i+ 1). Now the fact that the path
(x, y, z) is of length 2 and x ∈ U(j) and z ∈ U(j + 2) make y ∈ U(j + 1)
(Lemma 2.1). Since y belongs to both S(i + 1) and U(j + 1), it should
also belong to LOW (U(j + 1)). Since, we have taken an arbitrary x, the
lemma is true for all vertices belonging to LOW (U(j).

Lemma 3.11. If U(a) . . . U(b) forms a TWO-chain, then there exist
vertex-disjoint paths [x0, x1, . . . , xp−1, xp] and [y0, y1, . . . , yp−1, yp] where
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x0 ∈ LOW (U(a)), xp ∈ LOW (U(b − 1)), y0 ∈ HIGH(U(a + 1)), and
yp ∈ U(b) where p = b− a− 1.

Proof. Refer Figure 3. If U(a) is of type ONE, let it intersect S(c). If
it is of type TWO, let it intersect S(c − 1) and S(c). We build the paths
iteratively (by induction). The induction hypothesis is that if at any stage
[x0, x1, . . . , xi] and [y0, y1, . . . , yi] are the two paths then

(1) The paths are vertex-disjoint.

(2) If i 6= p, then xi and yi are in the same level U(a+ i).

(3) xi ∈ LOW (a+ i).

(4) If i 6= p, then yi ∈ HIGH(U(a + i + 1)) else if i = p then
yi ∈ U(a+ i+ 1) (which is the same as U(b)).

Initially take any vertex x0 ∈ LOW (a) and any vertex y0 ∈ HIGH

(a + 1). Since it is a TWO-chain, these two vertices lie in the same level
S(c) and they are obviously distinct.

Suppose it is true at the jth step, i.e., we have the two paths
[x0, x1, . . . , xj ] and [y0, y1, . . . , yj ] which satisfy the four properties. If j

is already equal to p, then we have found the required paths. If not, this
implies that yj ∈ HIGH(a + j + 1) and xj ∈ LOW (a + j). Since j < p,
(a+j+1) < (a+p+1) = (a+b−a−1+1) = b. Thus U(a+j+1) is not the
last U in the chain. This implies that it is of type TWO. By Lemma 3.10,
we have that xj is adjacent to some vertex in LOW (U(a + j + 1)) (say
xj+1) in the next level (which is S(a+ j+1)). Now, suppose j+1 < p, then
this implies that (a+ j + 2) < b. Thus U(a+ j + 2) is also of type TWO.
Since U(a+ j + 1) is also of type TWO (because (a+ j + 2) > a, i.e., it is
not the first level), this implies by Lemma 3.7 that yj should be adjacent
to some vertex in HIGH(a + j + 2) (say yj+1) in the next level (which is
S(a+j+1)). Thus in this case the induction hypothesis is true for j+1 also.
If j+1 = p, then because every vertex of U(a+j+1) = U(a+p) = U(b−1),
is adjacent to some vertex of U(b), yj should be adjacent to some vertex
jj+1 in U(b). Thus even in this case the induction hypothesis holds good.

The induction gives the result immediately.

Lemma 3.12. If U(a) . . . U(b) are the sets intersecting S and there is a
TWO-chain, then edge-disjoint paths exist.

Proof. Let [x0, x1, . . . , xp] and [y0, y1, . . . , yp] be the two paths which
are mentioned in Lemma 3.11 (p = s − a − 1). Now consider the paths
[u . . . x0, y0, y1, . . . , yp, . . . , v] and [s . . . x0, x1, . . . , xp . . . t]. These paths have
only one vertex in common i.e., x0. But these two do not have any edge
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in common because the vertices y0 and x1 are distinct (they in fact lie in
distinct levels).

Remark 3.1. The problem with these two paths is that the path starting
from the first U i.e., U(a), does not go upto U(b), but stops in U(b− 1).
Thus if we are able to extend this path until U(b) still keeping the paths
vertex-disjoint, we will get the required two paths. Note that even though
a TWO-chain exists, there may not be any vertex-disjoint paths.

Lemma 3.13. If U(a) . . . U(b) are the sets intersecting S and if they form
a TWO-chain, vertex-disjoint paths exist iff one of the following conditions
hold:
1. If [x0, x1, . . . , xp] and [y0, y1, . . . , yp] are the two vertex-disjoint paths
mentioned in Lemma 3.11 and S(c) . . . S(c+ p) are the levels which contain
the above vertices, then for at least one e, c ≤ e ≤ c + p we have that
| S(e) |> 2.
2. There is altelast one integer i, a ≤ i ≤ b, such that U(i) is of type
TWO-B.
3. U(a) is of type TWO, and there exist two distinct vertices, x, y ∈ S(c),
such that x ∈ HIGH(U(a)) and y is adjacent to at least one vertex in
LOW (U(a)) or U(b) is of type TWO, and there exist two distinct vertices
x, y ∈ S(d) , such that x ∈ LOW (U(b)) and y is adjacent to at least one
vertex in HIGH(U(b)) .
4. At least one of U(a), U(b) is of type ONE-B (say U(a)) and there
is a vertex x ∈ MID(U(a)) which is adjacent to some vertex in
HIGH(U(a+ 1)).

Proof. The important point to note here is that the starting vertices x0
and y0 may be any vertex of LOW (U(a)) and HIGH(U(a+ 1)), respec-
tively. Also there cannot be any edges between xi and yi+1 because they
belong to LOW (U(i)) and HIGH(U(i+ 2)), respectively.

(1) Let S(e) be the level such that | S(e) |> 2. Let i = e−c. Then there
is a vertex x which is neither xi nor yi in the level S(e). Now we claim
that there are vertex-disjoint paths from x0 to yi and s to x. Take any
shortest path from s to x (say P ) and the path [x0, x1, . . . , xi, yi]. If these
two paths do not intersect then our claim is true. Suppose these two paths
intersect at some vertex xj which is nearest along the path P to x. j 6= i

because no shortest path from s to x will pass through xi as xi and x are
in the same level. Let z be the vertex in the path P [xj , x] which is adjacent
to xi. By our choice of xj , z is not any of xj . . . xi. Consider the four-cycle
xj , z, yj+1, yj , xj . The edges (z, yj+1) and (yj , xj) exist because they are in
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the same level. The chords that this four-cycle can have are (xj , yj+1) and
(z, yj). But since the edge (xj , yj+1) cannot exist (because xj ∈ U(a + j)
and yj+1 ∈ U(a + j + 2)), the edge (z, yj) must exist. Now consider the
paths [x0, x1, . . . , xi, yi] and [s . . . y0, y1, . . . , yj , z].P [z, x]. These paths are
obviously vertex-disjoint. In a similar manner one can show that there are
vertex- disjoint paths [x . . . w, xm, . . . , xp] and [yi, yi+1, . . . , yp]. Here w

and xm are analogous to the vertices z and yj mentioned above. Thus
the vertex-disjoint paths are [u, . . . , x0, x1, . . . , xi, yi, yi+1, . . . , ym, . . . , v] and
[s, . . . , y0, y1, . . . , yj , z, . . . x . . . w, xm, xm+1, . . . , xp, . . . , t].

(2) This condition implies that | U(f) |> 2 for some f . If we inter-
change the roles of s, t and u, v, this condition will appear as condition (1)
for the interchanged version. Thus in a similar manner to the proof of (1)
the vertex-disjoint paths can be shown to exist.

(3) This condition implies that x is adjacent to some vertex (say y0)
in HIGH(U(a + 1)) (by Lemma 3.10) and y is adjacent to some vertex
in LOW (U(a)) say x0. We immediately have the paths [u . . . x, y0, . . . ,
yp, . . . , v] and [s . . . y, x0, . . . , xp, . . . t]. A similar construction can be given
for the other case also.

(4) When s−t and u−v are interchanged, this condition manifests itself
as condition (3). Thus we can again construct vertex-disjoint paths.
If all the above conditions are false, then it is obvious that vertex-disjoint
paths do not exist.

Theorem 3.1. The minimal vertex/edge-disjoint path problem can be solved
when there is a C1-type intersection in a chordal graph G in O(| V | + | E |)
time.

Proof. The various lemmas given before takes care for the corresponding
subclasses of C1-type of intersection. We now show that using these lemmas
we can easily implement a linear algorithm. We assume an adjacency list
representation of G . The sets S and U can be found out using a standard
bfs search (implemented in linear time). Also, the type of intersection can
be found out (whether it is C1 or C2) by scanning the sets of S′s and
U ′s. We are concerned now only with C1-type of intersection. Depending
on whether it is C1.1, C1.2 or C1.3, the corresponding lemmas give the
simple conditions to check and output the vertex-disjoint paths. As can be
noted edge-disjoint paths always exist in this type of intersection and also
be output in linear time.
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4. C2-type Intersection

In this type of intersection there are no type TWO U ’s or S’s. All are of
type ONE.

Lemma 4.1. If there is an integer j such that U(j) ∩ S(i) 6= ∅ and
U(j+1)∩S(i) 6= ∅ and both U(j) and U(j+1) are of type ONE, then for
no other r which is neither j nor j + 1, is U(r) ∩ S 6= ∅ true.

Proof. Similar to Lemma 3.2.

Definition 4.1. We define a sequence U(a) . . . U(b) to be a ONE-chain if
1. Each U(r), a ≤ r ≤ b, is of type ONE.
2. If U(a) ∩ S(i) 6= ∅, then for each r, a ≤ r ≤ b, U(r) ∩ S(i + r − a) 6= ∅
(refer to Figure 4).
From Lemma 4.1, it is clear that if a C2-type intersection exists in a chordal
graph then it can only be of the following types:
Type C2.1: There is only one U .
Type C2.2: There are only two U ′s and they intersect the same S.
Type C2.3: The U ′s in the chordal graph form a ONE-chain.

First we give lemmas which takes care of the trivial cases: C2.1 and
C2.2.

Lemma 4.2. Let there be a type C2.1-type intersection in G, and let U(j)
be the only U which intersects S(i), then
1. Edge-disjoint paths exist.
2. Vertex-disjoint paths exist iff one of the following conditions is true

(a) U(j) is of type ONE-B
(b) | S(i) |> 1.

Proof. Easy.

Lemma 4.3. Let there be a C2.2-type intersection in G, and let the two
intersecting U ′s be U(j) and U(j + 1) which intersect S(i), then
1. Edge-disjoint paths exist.
2. Vertex-disjoint paths exist iff one of the following conditions is true

(a) U(j) or U(j + 1) is of type ONE-B.
(b) | S(i) |> 2.

Proof. Easy.

We now turn our attention to C2.3-type intersection characterized by the
ONE-chain.
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We now study how the paths are organized in a ONE-chain. In other
words, we look at how each minimal path from s to t in S (or similarly from
u to v in U) is characterized by the ONE-chain. We prove the following
general lemma.

Figure 4. A ONE-chain. (The MID parts for some levels can be empty).

Lemma 4.4. In a ONE-chain U(a) . . . U(b) any path (shortest) [xa . . . xb]
with xa ∈ U(a) and xb ∈ U(b) has the property that all the vertices which
belong to COM (refer Definition 3.1) are present consecutively. In other
words, the MID vertices if present are at the ends.
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Proof. Assume the contrary. Suppose there is a path such that the COM
vertices are not consecutive. That is, there is a MID vertex present between
two COM vertices (the placing of the COM vertices in the path does not
matter). Let this path be [xa . . . xi . . . xj . . . xk . . . xb], where xa ∈ U(a),
xb ∈ U(b), xi ∈ COM(U(i)), xj ∈ MID(U(j)), xk ∈ COM(U(k)) and
xb ∈ U(b). Now, there is a path [yc . . . xi . . . xj . . . xk . . . yd] starting from
S(c) and ending in S(d), because xi and xk also belong to S ( they are
COM vertices). Hence by Lemma 2.1 this path belongs to S, which implies
that xj is a COM vertex. We arrive at a contradiction.

Definition 4.2. We say that there is a JUMP between j and j + 1 in a
ONE-chain U(a) . . . U(b) if | MID(U(j)) |≥ 1 and there is no edge between
any vertex belonging to MID(U(j)) and any belonging to MID(U(j+1)).
The reverse of a JUMP (JUMP in the other direction) is called an RJUMP
which is said to exist between j and j + 1 if | MID(U(j + 1) |≥ 1 and
there is no edge between any vertex belonging to MID(U(j + 1)).

We see from the above definition that a JUMP obviously exists between j

and j+1, if U(j) is of type ONE-B and U(j+1) is of type ONE-A (because
MID(U(j + 1)) = ∅). An RJUMP always exists between j and j + 1 if
U(j) is of type ONE-A and U(j+1) is of type ONE-B. What we have said
here equally applies to the S strand.

Corollary 4.4.1. Let U(a) . . . U(b) be a ONE-chain. If a JUMP occurs
between p and p+1, then every vertex in MID(U(j)) is adjacent to some
vertex in MID(U(j − 1)), for a < j ≤ p.

Proof. Assume the contrary. If some vertex, say x in MID(U(j)), a <

j ≤ p, is not adjacent to any vertex in MID(U(j − 1)), then it should be
adjacent to some vertex (say y) in COM(U(j − 1)). But this means that
a path exists in U with a MID vertex (x) inbetween y (a COM vertex)
and another COM vertex of COM(U(p + 1)), because of the JUMP. This
contradicts Lemma 4.4.

Similarly, if a RJUMP exists between q and q + 1, every vertex belonging
to MID(U(j)) is adjacent to some vertex belonging to MID(U(j + 1)),
for q + 1 ≤ j < b.

Corollary 4.4.2. Let U(a) . . . U(b) be a ONE-chain. Let there be a JUMP
between p and p+1. Then for every j, a < j ≤ p, there is an edge between
every vertex in COM(U(j)) and some vertex in MID(U(j − 1)).
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Proof. Take any vertex x in COM(U(j)). If it is not adjacent to any
vertex in MID(U(j−1)), it must be adjacent to some vertex in COM(U(j−
1)) (say y). Since a < j ≤ p, by Corollary 4.4.1 there must exist an edge
between a vertex (say z) in MID(U(j)) and a vertex (say t) in MID(U(j−
1)). Now consider the 4-cycle (x, y, z, t, x). One of the chords (x, z) or
(y, t) must exist. But by Lemma 4.4 the edge (y, t) cannot exist, because
it violates the ‘consecutive COM vertices’ property. Hence the edge (x, z)
should exist. Thus x is adjacent to some vertex in MID(U(j − 1)). A
contradiction.

A similar corollary can be stated for the case of the RJUMP.

Corollary 4.4.3. In a ONE-chain, there cannot be 2 JUMP’s (or 2
RJUMP’s), nor there can be an RJUMP before a JUMP (i.e if a JUMP
occurs between p and p + 1, then an RJUMP cannot occur between q and
q + 1, where q < p).

Proof. Follows from Lemma 4.4 and Corollaries 4.4.1 and 4.4.2, for if
there are 2 JUMP’s (or 2 RJUMP’s) or if a RJUMP exists before a JUMP,
it implies that there would be an edge between a vertex in MID(U(j))
(where j ≤ p) and a vertex in COM(U(j − 1)).

The above corollary implies that the most general form of a ONE-chain has
a JUMP and an RJUMP with the latter following the former. See Figure 5.
A ONE-chain need not have a JUMP or an RJUMP. It can also have only
one of them. Hereafter, we consider the ONE-chain in its most general form
i.e with both a JUMP and an RJUMP.

In a ONE-chain U(a) . . . U(b) , if a JUMP occurs between p and p+1 and
a RJUMP occurs between q and q+1 then, we can call the U ’s from U(a)
till U(p) as the pre-JUMP sequence and the U ’s from U(q + 1) till U(b)
as the post-RJUMP sequence. In the pre-JUMP sequence of a ONE-chain,
every vertex in MID(U(j)) is adjacent to some vertex in MID(U(j − 1))
(Corollary 4.4.1). Similarly, in the post-RJUMP sequence, every vertex
in MID(U(k)) is adjacent to some vertex in MID(U(k + 1)) . Hence,
we can form a path consisting entirely of MID vertices (MID vertices are
disjoint with the other set) in the pre-JUMP and post-RJUMP sequences.
The inbetween vertices must be all COM vertices. This inbetween sequence
between JUMP and RJUMP, we call as the COM region. This is the region
where really a collision between paths can occur. A region is nothing but a
set of consecutive levels.
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Figure 5. The general form of the ONE-chain.

Since we are interested in finding two disjoint paths, the idea is to construct
each of the path using as much of MID vertices as possible. In the case where
we can traverse the entire ONE-chain using only MID vertices of both S
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and U , we have two minimal disjoint paths easily. This is possible only if
there are no JUMPS or RJUMPS. In the general case where we assume that
there is a JUMP and an RJUMP, we have to include some COM vertices
to traverse the ONE-chain. In the following section, carrying on the points
made above we reduce the disjoint path problem to a bfs problem whose
solution yeilds the disjoint paths in a ONE-chain.

5. The BFS Problem

Definition 5.1. (Definition of a general BFS problem) Given the
levels X0 . . . Xl of a graph we should find k vertex/edge disjoint paths
x0, x1, . . . , xl and y0, y1, . . . , yl such that x0, y0 ∈ X(0), xl, yl ∈ X(l).

We now solve the above problem, keeping in mind that the underlying graph
is chordal. As can be noted we give an algorithm to find k vertex/edge-
disjoint paths instead of just two, because the bfs problem can be encoun-
tered in many situations where a general algorithm is needed.

Algorithm 5.1. ( k vertex disjoint paths)
1. Number the vertices in each level according to the numbering imposed

by Lemma 2.3. That is in a level Xi, if there are n vertices they could be
ordered 1 . . . n.

2. In X0 choose the k highest numbered vertices. These are the ones
which have the largest projection (refer Definition 2.3) on its next level (and
also subsequent levels). If there are less than k vertices in this level then
output-‘no k vertex disjoint paths are possible’. Stop.

3. Suppose we have got the k paths till level X(i). Let the vertices at
level X(i) be x1, x2, . . . , xk, where x1 is lower in ordering compared to x2
etc. imposed by the linear ordering of Lemma 2.3. Now for continuing the
path from x1 , choose the highest numbered vertex in its projection on the
next level. If a distinct vertex in the next level cannot be chosen for some
vertex, then output-‘no k vertex disjoint paths are possible’. Stop.

4. If level X(l) (last level) has been reached, output the k vertex dis-
joint paths constructed and stop. Else goto step 3.

Lemma 5.1. Algorithm 5.1 finds k vertex disjoint paths in the bfs problem
in O(| V | + | E |) time and space.

Proof. We give a natural inductive proof.
Base case. Handled by step 2. If there are not k vertices in the first level,
then a negative result is output.
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Inductive case. Suppose we have constructed the k paths till level X(i) .
Let the vertices at level X(i) be x1, x2, . . . , xk, where x1 is lower in order
compared to x2 , etc. That is on the next level, Proj(x1) ⊂ Proj(x2) ⊂
· · · ⊂ Proj(xk) . By induction, at level X(i) the k vertices chosen are
the k highest numbered vertices, which means that the projection of x1
(the lowest numbered among the k vertices) is a superset of the projection
of any other vertex unchosen at this level. In step 3 where we extend the
path to the next level, we preserve the above property. Because for every
vertex x at level X(i) we choose the highest numbered vertex within its
(x’s) projection in the next level.By starting this procedure from the lowest
ordered vertex (x1), we make sure that the lower ones get the preference
in selection (the higher ones anyway have a wider superset choice to choose
from). Thus at each level we get the k highest numbered vertices. If for
some vertex xi we cannot choose it successor, it means that all the vertices in
its projection have already been chosen and hence we have to stop. The time
taken for step 1 (numbering vertices at each level) is O(| V | + | E |) , the
same time that it takes for a bfs search. The numbering can be done by just
comparing the cardinality of its projection on the next level. For other steps,
the time taken is within O(| V | + | E |) . Hence overall time complexity is
O(| V | + | E |). Also it is easy to see that only O(| V | + | E |) space is
used.

Algorithm 5.2. (k edge disjoint paths)

1. Same as step 1 of Algorithm 5.1.

2. In X(0) choose the k highest numbered vertices. However if there
are less than k vertices, we do a second round of choosing starting from the
highest numbered vertex, and we do as many rounds needed to select the
k vertices. Of course, a vertex will be repeated, which means that multiple
edges will emanate from this vertex. If it is still not possible to choose, we
output: k edge disjoint paths not possible. Stop.

3. Suppose we have formed edge disjoint paths till level X(i). To extend
the paths to the next level we do the same as in step 3 of Algorithm 5.1. The
only difference is that the vertices are repeated. That is in the first round
for each vertex (starting from the lowest ordered) we choose that edge which
goes to the highest numbered vertex in its projection and we do the same
procedure for the higher numbered vertices. In the second round, we again
start from the lowest ordered among the repeated vertices and repeat the
procedure. If distinct edges cannot be chosen output: no k edge disjoint
paths are possible. Stop.

4. If level X(l) (last level) has been reached, output the k edge disjoint
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paths constructed and stop. Else goto step 3.

Lemma 5.2. Algorithm 5.2 finds k edge disjoint paths in bfs problem in
O(| V | + | E |) time and space.

Proof. The proof is very similar to that of Lemma 5.1.

The purpose of solving the general bfs problem (k disjoint paths instead of
2) is that this comes in handy when we generalize for k vertex/edge minimal
disjoint paths in a later section.

Now we reduce the problem of finding 2 vertex/edge disjoint paths in a
ONE-chain to the bfs problem we have just solved.

Lemma 5.3. The problem of finding 2 vertex/edge disjoint paths in a ONE-
chain reduces to the bfs problem.

Proof. We consider the general form of the ONE-chain (Figure 5) where
there is a JUMP and an RJUMP for both S and U . For S, let the JUMP
exist between s1 and s1 + 1 and the RJUMP between s2 and s2 + 1.
Similarly for U, let the JUMP exist between u1 and u1+1 and the RJUMP
between u2 and u2 + 1 . See Figure. Our aim now is to construct two
disjoint paths, one belonging to S and the other belonging to U . We try
to use as much MID vertices as possible. This is naturally accomplished
in the pre-JUMP and post-RJUMP sequences. But in the COM region we
have to use vertices which are common to both S and U to complete the
disjoint paths. Consider the levels which fall in the COM region of both
S and U . We call this as the effective intersection region, because once
we have constructed vertex/edge disjoint paths in this region, we can easily
extend in either direction to get the full disjoint paths. In figure the effective
intersection region is between levels l and m. We have two cases:

Case (a). Take the COM of level l and the subsequent levels till the
COM of level m. We have a bfs problem. Apply Algorithms 5.1 and 5.2
(with k = 2) to get 2 vertex/edge disjoint paths. Each of them can be
extended in either direction, in their respective sequences (S or U) to get
the full disjoint paths from s to t and from u to v. If we get a negative
result in the bfs problem, we apply case (b).

Case (b). In case (a) we used only the COM vertices of level l and m.
We didn’t use the MID vertices of these levels. In this case, we take care of all
vertices in levels l and m and also reduce the size of the problem, giving a
natural recursive solution. Construct a smaller ONE-chain as follows. Take
the projection of MID(U(l)) on the next level i.e COM(U(l + 1)). The
vertices which are not in the projection form the new COM part at this
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level. Do a bfs search till level m − 1. Similarly, repeat the procedure for
the S strand. We now get a new ONE-chain, to which we again apply case
(a). Thus we have to solve the bfs problem with a smaller size.

The time complexity of the above procedure can be calculated as follows.
There can be at most be | V | reductions in the size of the problem, which
is the worst case. In each intermediate step the amount of time taken is
O(| V | + | E |) because this is the time needed for solving the bfs prob-
lem (Lemma 5.2) and for a bfs search. Hence, the overall complexity is
O(| V | ⋆ (| V | + | E |)) which is O(| V | ⋆ | E |).

However, if we want to find only edge disjoint paths we can improve
the complexity to O(| V | + | E |) as follows. At level l, if the downward
special vertex in the COM set (this vertex is connected to all the vertices
in the next level), take this as the starting vertex. Otherwise, take two
downward special vertices which belong to the MID parts of S and U at
level l. Now solve the bfs problem for 2 edge disjoint paths starting from
COM(U(l + 1)) till COM(U(m − 1)). Depending on the starting vertex
at level l extend the path to level m by adding edges to the appropriate
upward special vertices at level m. The time taken is only the time to solve
one bfs problem and hence is O(| V | + | E |).

Theorem 5.1. The minimal vertex-disjoint path problem can be solved when
there is a C2-type intersection in a chordal graph in O(| V || E |) time. The
corresponding complexity for the edge-disjoint version is O(| V | + | E |).

Proof. Follows from the above discussion and the fact that C2.1 and C2.2-
type intersections can be easily implemented in a similar way as mentioned
in Theorem 3.1 in linear time.

Combining Theorems 3.1 and 5.1 we can state the following final result.

Theorem 5.2. In a chordal graph the 2 minimal edge-disjoint path problem
can be solved in O(| V | + | E |) time and the 2 minimal vertex-disjoint
path problem in O(| V | ⋆ | E |) time.

6. Conclusion and Open Problems

In this paper, we have given efficient algorithms for the minimal disjoint
path problem on chordal graphs, which not only gives disjoint paths for
communication, but also minimises the time required for communication.
Whereas the edge-disjoint version on chordal graphs admits a linear solution,
the vertex-disjoint version does not. It would be interesting to see whether
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the vertex-disjoint version of the problem has a linear solution when the
input graph is restricted to the class of interval graphs, a subclass of chordal
graphs. All we can say is that there is a simple linear algorithm for this
problem on proper interval graphs—a much smaller class of graphs.

Also it would be interesting to study the complexity of this problem on
general graphs, as well as other classes of perfect graphs such as permutation
graphs and comparability graphs.
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