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Abstract

A caterpillar is a tree with the property that the vertices of degree
at least 2 induce a path. We show that for every graph G of order n,
either G or Ḡ has a spanning caterpillar of diameter at most 2 log n.
Furthermore, we show that if G is a graph of diameter 2 (diameter 3),
then G contains a spanning caterpillar of diameter at most cn3/4 (at
most n).
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1. Introduction

It is easy to show that for every graph G, either G or the complement Ḡ
is connected. Consequently, if Tn denotes the family of all trees of order n,
then for every graph G of order n, either G or Ḡ contains a member of Tn

(as a spanning subgraph). Such a family is called complete, that is, a family
Fn of graphs of order n is complete if for every graph G of order n, either
G or Ḡ contains a member of Fn. Thus, Tn is complete and it is easy to
show that the subfamily Tn(4) of trees of order n and diameter at most 4 is
also complete. In Section 2, we will discuss other complete families of trees
and show, in particular, that Cn(2 log n) is complete, where Cn(2 log n) is
the family of caterpillars of order n and diameter at most 2 log n. In Section
3 we will investigate graphs of order n and diameter at most 3 and show that
if G has diameter 2 (diameter 3), then G contains a spanning caterpillar
of diameter at most cn3/4 (at most n).

2. Complete Families of Trees

We begin this section by proving a theorem from graph theory folklore. For
vertices x and y of a graph G, dG(x, y) will denote the distance between x
and y in G, i.e., the number of edges in a shortest path from x to y. The
diameter of G, denoted diam(G), is the largest distance between pairs of
vertices of G.

Theorem 1. Let Tn(4) denote the family of trees of order n and diameter

at most 4. Then Tn(4) is complete.

Proof. Without loss of generality, we may assume n ≥ 5. Let G be a graph
of order n. If diam(G) ≤ 2, then clearly G contains a spanning tree with
diameter at most 4. Thus we may assume that either G is disconnected or
G has diameter at least 3. In either case, G contains nonadjacent vertices
u and v which have no common neighbors. Therefore, in Ḡ, u and v are
adjacent and every other vertex is adjacent to at least one of u and v. Thus,
Ḡ contains a spanning tree of diameter at most 4.

Let G be the graph of order 5s obtained by replacing each vertex of a
5-cycle with a copy of the complete graph Ks and adding edges between
two vertices in different copies of Ks if the corresponding vertices of the
5-cycle were adjacent. Then neither G nor Ḡ contains a spanning tree of
diameter at most 3. Thus, with respect to diameter, Theorem 1 cannot be
improved.
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Recently, Bialostocki, Dierker and Voxman [1] investigated other complete
families of trees. Moreover, they conjectured that the family Bn of brooms
of order n is complete, where a broom (of order n) is a tree consisting of a
star and a path, with one end of the path identified with the central vertex
of the star. The brooms of order 6 are shown in Figure 1.

In [2], Burr settled their conjecture in the affirmative and suggested
that, in fact, only about half of Bn is needed for a complete family. We
note that any complete subfamily of Bn necessarily contains the broom of
diameter n − 1, i.e. the path of order n.

Figure 1

One property of brooms is that all non-endvertices lie along a single path.
In the remainder of this paper we will focus primarily on complete families
of trees with this property having small diameter.

A caterpillar is a tree with the property that the vertices of degree
at least 2 induce a path. These vertices form the spine of the caterpillar.
Note that if S is the spine of a caterpillar C of order at least 3, then
diam(C) = |S|+1. In Theorem 2, we will show that Cn(2 log n) is complete,
where Cn(2 log n) is the family of caterpillars of order n and diameter at
most 2 log n. (Here, log n is log2 n. ) The following lemma will be useful.

Lemma 1. Let G be a graph of order n and diameter 2. If G contains a

caterpillar C of diameter d, then G contains a spanning caterpillar with
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diameter at most d + (|V (G)| − |V (C)|).

Proof. Let v1, v2, . . . , vd−1 be the vertices in the spine of C, where
vivi+1 ∈ E(C), 1 ≤ i ≤ d − 2. We first construct a caterpillar C ′ such
that (i) |V (C ′)| = |V (C)| + 1 and (ii) diam(C ′) ≤ diam(C) + 1.

Without loss of generality we may assume that if x is an endvertex
of C and x is adjacent to vi, then x is not adjacent to vj for j < i.
For convenience, we will say that the end vertices have been ”shifted left”.
Furthermore, we may assume that no vertex in the spine is adjacent to a
vertex of V (G) − V (C) since in that case we immediately obtain C ′ with
diam(C ′) = diam(C). Let y ∈ V (G) − V (C). Then, since dG(y, v1) = 2
it follows that there is a vertex x of C such that xv1 ∈ E(C) and yx ∈
E(G). Thus we obtain C ′ with spine {x, v1, v2, . . . , vd−1} and diam(C ′) =
diam(C) + 1.

Clearly, by repeating this procedure we obtain the desired spanning
caterpillar.

A set X of vertices in a graph G is a dominating set if every vertex of
V (G) −X is adjacent to at least one vertex of X. In [3] it was shown that
for every graph G of order n, either G or Ḡ has a dominating set X with
|X| ≤ log n. This result will be used in the proof of Theorem 2.

Theorem 2. Let Cn(2 log n) denote the family of caterpillars of order n
and diameter at most 2 log n. Then Cn(2 log n) is complete.

Proof. It is straightforward to verify the result for n ≤ 4. Thus we assume
n ≥ 5. If G or Ḡ is complete, then G or Ḡ contains a spanning caterpillar
of diameter 2 (i.e., a spanning star), where 2 ≤ 2 log n. Furthermore, if G
or Ḡ is disconnected or has diameter at least 3 then, as in the proof of
Theorem 1, either G or Ḡ contains a spanning caterpillar of diameter at
most 3 and 3 ≤ 2 log n. Thus we may assume that diam(G) = diam(Ḡ) = 2.

Let uv ∈ E(G) and let A denote those vertices adjacent to neither u
nor v in G. Suppose |A| ≤ 2 log n−3. Then, in Ḡ−A, u and v are either
in different components or at distance at least 3. Consequently, as in the
proof of Theorem 1, Ḡ − A contains a spanning caterpillar of diameter at
most 3. Thus Ḡ contains a caterpillar of diameter at most 3 and it follows
from Lemma 1 that Ḡ contains a spanning caterpillar of diameter at most
3 + |A| ≤ 2 log n. Thus we may assume that if uv ∈ E(G) then u and v
have at least 2 log n− 3 common neighbors in Ḡ. Similarly, if uv 6∈ E(G),
then u and v have at least 2 log n − 3 common neighbors in G.

Let X ⊆ V (G) with |X| ≤ log n such that X is a dominating set in
G or Ḡ. (The existence of such a set is guaranteed by the aforementioned
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result in [3]). Assume, without loss of generality, that X dominates G and
X = {v1, v2, . . . , vt}. We claim that there is a v1 − vt path in G containing
the vertices of X in the order v1, v2, . . . , vt and such that between vi and
vi+1 there is at most one vertex. Suppose such a v1 − vl path P has been
constructed for l < t. If vlvl+1 ∈ E(G) then we may extend P to include
vl+1. If vlvl+1 6∈ E(G) then vl and vl+1 have at least 2 log n − 3 ≥ 2l − 1
common neighbors in G. Consequently there is a common neighbor w ∈
V (G)−V (P )−X and P can be extended to include vl+1. Thus G contains
a v1 − vt path of order at most 2t − 1 containing X and this path forms
the spine of a spanning caterpillar of diameter at most 2 log n.

In [3] it was shown that for fixed ε > 0 there exists n0 = n0(ε) such
that for each n ≥ n0 there is a graph G of order n such that no set of
at most (1 − ε) log n vertices dominates either G or Ḡ. Thus the bound
in Theorem 2 on the diameter of the spanning caterpillars is, in fact, the
correct order of magnitude.

In the proof of Theorem 2, we began with either a caterpillar of diameter
at most 3 or a dominating set of cardinality at most log n and built a
spanning caterpillar of diameter at most 2 log n. The same proof technique
can be used to establish Theorem 3.

Theorem 3. If Dn denotes the family of trees of order n with diameter

at most 6 and domination number at most log n, then Dn is complete.

3. Spanning Trees of Small Diameter Graphs

If G is the graph of Figure 2, then G has diameter 4 and no spanning
caterpillar. In this section we will show that every graph of diameter at
most 3 has a spanning caterpillar.

Figure 2
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Theorem 4. If G is a graph with diameter at most 3, then G contains

a spanning caterpillar.

Proof. If diam(G) = 1 then G is complete and contains a spanning star.
If diam(G) = 2 then Lemma 1 guarantees the existence of a spanning
caterpillar. Thus we need only show that if G is a graph of diameter 3
then G has a spanning caterpillar. Assume, to the contrary, that G is
an edge-maximal counterexample. Thus, by edge maximality, G contains
two vertex disjoint caterpillars that together span G. Among all such pairs
C1, C2 of disjoint caterpillars that together span G select a pair such that
|V (C1)| is as large as possible. Let v1, v2, . . . , vl be the vertices (in order)
of the spine of C1 and vl+1, vl+2, . . . , vm be the vertices of the spine of C2.
As in the proof of Lemma 1, assume that the endvertices of C1 have been
“shifted left”. Let w be an endvertex of C1 adjacent to vl and let u be
an endvertex of C2 adjacent to vl+1. If C2 is trivial, let u = vl+1. Clearly,
dG(u, w) 6= 1 since, by assumption, G has no spanning caterpillar. Thus,
2 ≤ dG(u, w) ≤ 3. Furthermore, by the choice of C1 and C2 we know that:

(1) w is adjacent to no vertex of C2,

(2) w is adjacent to no vi, i < l,

(3) vl is adjacent to no vertex of C2,

(4) u is adjacent to no vi, i ≤ l, and

(5) there is no u−w path whose interior vertices are all endvertices of
C1 and C2.

By (1) and (2), every adjacency of w other than vl in G is an endvertex
of C1. Thus, by (4) and (5) there is no u − w path of length 2. Therefore,
dG(u, w) = 3. Let u, x1, x2, w be a u − w path of length 3. Then by (1)
and (2), either x2 = vl or x2 is an endvertex of C1. If x2 = vl then by (3)
and (4) it follows that x1 is an endvertex of C1. Subsequently C1 can be
extended by including x1 in the spine and u as an endvertex, contradicting
the maximality of C1. Therefore x2 is an endvertex of C1. However, then
by (4) and (5), x1 must be a spine vertex of C2 and again the maximality
of C1 is contradicted, and the proof is complete.

For even n, let G be the graph of order n obtained from the graph Kn/2 ∪
K̄n/2 by adding a matching between the set of n/2 isolated vertices and
the remaining n/2 vertices. Then every spanning caterpillar has diameter
n/2 + 1 . Thus the (implied) bound in Theorem 4 of n − 1 on the smallest
diameter of a spanning caterpillar is the correct order of magnitude for
graphs of diameter 3. For graphs of diameter 2, some improvement can be
made. The following notation will be useful. Let G be a graph, u a vertex
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of G, and H a subgraph of G. Then

NH [u] = {w ∈ V (H)|uw ∈ E(G)} ∪ {u}.

Theorem 5. There is a constant c such that if G is a graph with

diam(G) = 2, then G contains a spanning caterpillar of diameter at most

cn3/4.

Proof. We first show that G contains a dominating set with at most
2n3/4 vertices. Let u1 be a vertex of G with degGu1 ≥ n1/4 and set
U1 = NG[u1]. Let u2 ∈ V (G) with degG−U1

u2 ≥ n1/4 and set U2 =
NG−U1

[u2]. Continue in this fashion to obtain a maximal length sequence
of vertices u1, u2, . . . , ut, t ≥ 1, where degG−U1−U2−...−Ul−1

ul ≥ n1/4 and
Ul = NG−U1−U2−...−Ul−1

[ul] for l = 1, 2, . . . , t, and let A = V (G) − U1 −

U2 − . . . − Ut. Then t ≤ n3/4 and ∆(< A >) < n1/4. If |A| ≤ n3/4, then
A ∪ {u1, u2, . . . , ut} is the desired dominating set. We show that this must
be the case. Assume, to the contrary, that |A| = kn3/4, where k > 1.
Each of the

(|A|
2

)

pairs of vertices of A are at distance 1 or 2 in G. Since

∆(< A >) < n1/4, < A > has fewer than (|A| ·n1/4)/2 edges. Furthermore,
the number of pairs of vertices of A with a common neighbor in A is less

than |A| ·
(n1/4

2

)

. Thus, more than

(

kn3/4

2

)

−
kn

2
− kn3/4 ·

(

n1/4

2

)

pairs of vertices of A have a common neighbor in V (G)−A, implying that
more than

k2n3/2

2
−

kn

2
−

kn5/4

2

pairs of vertices in A have a common neighbor in V (G)−A. However, each
vertex in V (G)−A is adjacent to fewer than n1/4 vertices of A. Therefore
the number of pairs of vertices in A with a common neighbor in V (G)−A
is less than

n ·

(

n1/4

2

)

.

We conclude that

k2n3/2

2
−

kn

2
−

kn5/4

2
<

n3/2

2
−

n5/4

2
,

which is a contradiction for k > 1 and n sufficiently large. Thus G has a
dominating set X with t ≤ 2n3/4 vertices.
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We complete the proof by showing that the vertices of X are contained
in the spine S of a caterpillar of G in which

(1) consecutive vertices of X in < S > are at distance at most 3 in
< S > and

(2) < S > begins and ends with a vertex of X.

Suppose l < t vertices of X are contained in such a caterpillar C with
spine S′. We assume that no vertex of X is an endvertex of C and that
the endvertices of C have been “shifted left.” Furthermore, we assume that
if u ∈ V (G) − X − S′ and u is adjacent to a vertex in S′, then u is an
endvertex of C. Let x1 ∈ X be the rightmost spine vertex of C and let
x2 ∈ X − V (C). Furthermore, let w be an endvertex of C adjacent to x1.
If no such w exists, then we may replace x1 in X by its predecessor on
the spine S′ and continue. Then dG(w, x2) ≤ 2. If wx2 ∈ E(G) we can
easily extend C to include w and x2 as spine vertices. If dG(w, x2) = 2,
then, as in the proofs of previous results, w and x2 must have a common
neighbor y that is not on the spine of C (where y may or may not be in
X. ) In either case, we can extend the spine of C to include w, y, x2, and
the proof is complete.
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