
Discussiones Mathematicae – Graph Theory 15 (1995) 59–72 59

EDGE–DISJOINT PATHS IN PERMUTATION GRAPHS

C. P. Gopalakrishnan

and
C. Pandu Rangan

Department of Computer Science, Indian Institute of Technology
Madras 600 036, India

e-mail: rangan@iitm.ernet.in

Abstract

In this paper we consider the following problem. Given an undi-
rected graph G = (V,E) and vertices s1, t1; s2, t2, the problem is to
determine whether or not G admits two edge–disjoint paths P1 and
P2 connecting s1 with t1 and s2 with t2, respectively. We give a li-
near (O(|V |+ |E|)) algorithm to solve this problem on a permutation
graph.

Keywords: algorithm, bridge, connectivity, disjoint paths, permuta-
tion graph.

1991 Mathematics Subject Classification: 058C85, 05C38

1. Introduction

One essential element in parallel computation models, which extremely in-
fluences the execution speed of the entire system, is information exchange
between individual processors. The standard solution for performing data
transmissions between processors is to use a sparse communication network,
in which each processor is connected by a bidirectional line to few other
processors. One basic method for performing communications between pro-
cessors is open–line communication. Open–line communication is a suitable
method when data of variable length have to be transferred in bidirectional
way. If a pair of processors wants to communicate, the network satisfies the
request by establishing a path between this pair. The nodes/lines on such
a path are exclusively assigned for this purpose and will not be released until
the communication finishes. If two pairs of processors wish to communicate

60 C. P. Gopalakrishan and C. Pandu Rangan

simultaneously, the network reserves two paths that are node- or line- dis-
joint in order to ensure that messages between these pairs do not interfere.
If we model processor networks by undirected graphs, in which vertices and
edges represent processors and bidirectional communication lines, respec-
tively we get the following problem:

Given an undirected graph G = (V,E) and four distinct vertices
s1, t2; s2, t2 find two vertex/edge–disjoint paths P1 and P2 connecting
s1 with t1 and s2 with t2, respectively.

The vertex–disjoint version of this problem i.e., finding two vertex–disjoint
paths between two given pairs of vertices has known algorithms. For ex-
ample, Shiloach [S 80] and Ohtsuki [O 80] gave an O(|V | ∗ |E|) algorithm
for solving this problem on general undirected graphs. The complexity of
the problem becomes linear on special classes of graphs like chordal ([KPS
91]), planar ([RP]) and circular–arc graphs ([SP 91]). Recently, we have
shown that this problem admits a linear solution on permutation graphs
also ([GP]).

As far as the edge–disjoint version is concerned, LaPaugh and Rivest
([LR 78]) give a polynomial reduction to get edge–disjoint paths using
vertex–disjoint algorithms after suitably modifying the input graph.

Figure 1. A permutation graph and its permutation diagram

More specifically, this transformation increases the size of an input graph
G = (V,E) as follows: the number of vertices become squared and the
number of edges become |V |3 in the worst case. Hence, even when a linear
vertex–disjoint algorithm is applied the complexity becomes cubic in the
number of vertices. Also the following results are know. Cypher ([C 80])
has proposed polynomial algorithms that determine n edge–disjoint paths

Edge–disjoint paths in permutation graps 61

(n ≤ 5) connecting n pairs of vertices in (n+2)–connected graphs. Frank
([F 85]) developed an O(|V |3 ∗ log(|V |)) algorithm to compute n edge–
disjoint paths between n pairs of vertices if the graph is planar and the
2n vertices lie on the outer face of a planar embedding of the graph and
all vertices not on the outer face have even degree. [KPS 91] gives a simple
linear algorithm using greedy techniques of [S 90] to find edge–disjoint paths
between two pairs of vertices in chordal graphs.

2. Preliminaries

A permutation graph is a graph for which there is a labelling {v1, ..., vn}
of the vertices and a permutation π of {1, ..., n} for which (i−j)(π(i)−π(j))
< 0 if and only if (vi, vj) is an edge.

A permutation graph has a geometric representation called the permu-
tation diagram. Consider two parallel line segments A and B and mark
off n points on each segment. Label them as 1...n in that order on
each segment. Let π denote a permutation of (1...n). Now draw n line
segments, connecting point i in A to point π−1(i) in B, for 1 < i < n.
These n line segments will serve as the underlying intersection model for
the input permutation graph G. The permutation graph represented is the
one obtained by taking the line segments as vertices and the line crossings
as edges. That is, (i, j) is an edge iff the line segments (i, π−1(i)) and
(j, π−1(j)) intersect. See Figure 1 for an example of a permutation graph
and its corresponding permutation diagram. Given any permutation graph,
Spinrad [S 83] shows how to construct a corresponding permutation diagram
in O(n2) time. Applications of permutation graphs are discussed in [G 80].

Let P = [v0, v1, ..., vn−1, vn] be a path of lenght n in a permutation
graph. That is, (vi, vi+1) ∈ E, for all 0 ≤ i < n. We sometimes use the
notation P (v0, vn) to indicate the above path between the source vertex v0
and sink vn. The set of vertices of the path P is denoted by V (P) and the
set of edges constructing it is denoted by E(P). For two vertices vi, vj ∈ P,
the subpath of P between these two vertices is denoted by P [vi; vj]. An
edge {vi, vj} ∈ E − E(P) is called a chord of P. A chordless path has no
chords. P is called simple if vi 6= vj for 0 ≤ i < j ≤ n. The operation ’.’
concatenates two paths, i.e., if P = [v0, ..., vn] and Q = [u0, ..., um] are two
paths and vn = u0, then P.Q denotes the path [v0, ...vn = u0, ..., um].

A path P = [v0, v1, ..., vn] is a cycle of length n if n ≥ 3, vn = v0 and
P = [v0; vn−1] is a simple path. A chordless cycle has no chords. We state
the following lemma about chordless cycles in a permutation graph.

62 C. P. Gopalakrishan and C. Pandu Rangan

Lemma 2.1. In a permutation graph, the length of a chordless cycle can be
at most four.

Let δG(x, y) be the distance, i.e., the length of a minimal path (if any),
between two vertices x, y ∈ V. An edge separator for a pair of vertices
x, y ∈ V is a set of edges S ⊆ E, such that δG(x, y) < δG−S(x, y) = ∞. S
is a minimal edge separator if no proper subset of S is an edge separator
for x and y.

In this paper, we use the concept of bridges to design our algorithm.
Like the depth first search tree, the bridges offer clean solutions to a variety
of graph problems. The graph viewed as a suitable cycle or a path together
with a collection of its bridges offers a good insight into its structure. We
define a bridge formally as follows. Here we use the definition as in [O 80].
Other equivalent definitions may be found in [BM 76], [KPS 91].

Definition 2.1. Let J be a fixed subgraph of G. Let V (J) be the set of
all vertices which belong to the subgraph J. Let E(J) by the set of edges
which constitute J. We define a bridge B of J as either of the following:

• a single edge e = (x, y) ∈ E − E(J) and x, y ∈ V (J).
This is called as a degenerate bridge.

• a maximal subgraph of G′ = (V,E − E(J)) with at least one vertex
x ∈ V − V (J) such that, for every other vertex y of B, there exists
a path R(x, y) without intersecting any vertex in V (J) except at y.

This path is usually called a cross–cut from x to y and is denoted by
CCB(x, y).

The vertices of B which also belong to J are called the vertices of attachment
of B with respect to J.

3. The Edge–Disjoint Path Algorithm

Let G = (V,E) be a given undirected permutation graph. Let s1, t1 and
s2, t2 be the two pairs of vertices (all distinct) between which two edge–
disjoint paths have to be found. We assume that the Edge–Disjoint Path
problem (henceforth abbreviated as EDP) is ’true’ if the two required edge–
disjoint paths exist, otherwise it is ’false’. We first state some definitions
and lemmas.

Let P be a shortest path between s1 and t1 in G. Obviously P is
chordless. Let B= {B1, B2, ...} be the set of bridges with respect to P. It
is obvious that all bridges are non–degenerate.

Edge–disjoint paths in permutation graps 63

We state a few definitions regarding the structure of the bridgess in B.

Definition 3.1. The endpoints of a bridge B ∈B are its extreme vertices
of attachment on P. See Figure 2. Let the endpoints be x and y for a bridge
B. Then P [x; y] is called as the width of B. We sometimes use the same
term to denote the length of the subpath P [x; y]. The width of a bridge is
zero, if it has only one vertex of attachment on P. Starting from x we can
number the vertices of attachment on P consecutively till y. For a bridge
B, two vertices of attachment are called consecutive if they are numbered
consecutively.

Figure 2. Structure of a bridge B. a and b are the endpoints of the bridge.
m and n are consecutive vertices.

(a) Non-overlapping bridges

(b) Overlapping bridges

Figure 3. Non–overlapping and Overlapping bridges. In overlapping bridges
P [c; b] is the interval of overlap. Notice how the vertices of attachment of
both the bridges alternate in the interval of overlap.

64 C. P. Gopalakrishan and C. Pandu Rangan

Definition 3.2. Two distinct bridges B1 and B2 are said to be mutually
traversable if they share at least one common vertex of attachment. If B1

and B2 do not share any common vertex of attachment then they can be
further classified as overlapping or non–overlapping depending on whether
their widths overlap or not. For overlaping bridges we define width of overlap
as the subpath common to both widths. We also use the same term to denote
the length of such a subpath. See Figure 3.

For all the lemmas that follow we assume the following:

• P is a shortest path between s1 and t1, the two distinguished vertices.
• B= {B1, B2, ...} are the set of bridges with respect to P.
• Two distinguished bridges in B, Bs and Bt contain s2 and t2, respec-
tively.

• The endpoints of Bs are a and b and those of Bt are c and d.

Lemma 3.1. If Bs = Bt (i.e., Bs and Bt refer to the same bridge) then
EDP is true.

Proof. Easy.

Lemma 3.2. Let Bs and Bt be mutually traversable. Then EDP is true.

Proof. This implies that Bs and Bt share a common vertex of attach-
ment. Hence it is obvious that a path from s2 to t2 can be constructed
without using any vertices of P.

Lemma 3.3. Let a path exists between s2 and t2 in G−E(P). Then EDP
is true.

Proof. This path and P are the two required edge–disjoint paths.

Lemma 3.4. Let Bs and Bt be non–overlapping. Let E(P) be an edge
separator for s2 and t2. Then EDP is false if and only if there exists no
path between s1 and t1 in G− E(P [b; c]).

Proof. Since Bs and Bt are non–overlapping, without loss of generality
let the order of occurence of the endpoints be a, b, c, d in P. Refer 3(a).

First we prove the ’only if’ part. Let there exist a path, say Q between
s1 and t1 in G−E(P [b; c]). Then CCBs

(s2, b).P [b; c].CCBt
(c, t2) and Q

are the required edge–disjoint paths and hence EDP is true.

The ’if part’. Let there exists no path between s1 and t1 in G −
E(P [b; c]). This also implies that there can exist no path between s2 and t2
in G−E(P [b; c]) for the following reason. If possible let there exist a path

Edge–disjoint paths in permutation graps 65

S between s2 and t2 in G−E(P [b; c]). Let p and q be the vertices of S on
P which are nearest to s1 and t1, respectively. Then P [s1; p].S[p; q].[q; s2]
is a path between s1 and t1 in G− E(P [b; c]), a contradiction.

It is now clear that E(P [b; c]) is an edge–separator for both s1, t1 and
s2, t2. Let T ⊆ E(P [b; c]) be a minimal edge separator for s2 and t2. If
|T | = 1 then EPD is false, because any pair of paths connecting s1, t1 and
s2, t2 respectively has to pass through e ∈ T. We show that only this case
is possible, or in other words, |T | cannot be greater than one.

Let if possible |T | ≥ 2. Let e1 = {x, y} ∈ T. Clearly, {x, y} is connected
in G − {e1}. Let R[x, y] be a minimal path in G − {e}. By Lemma 2.1,
|R| can be 3 or 4.

Case 1. |R| = 3. Let R = [x, z, y] say. Obviously, either the edge
{x, z} or {z, y} lies in T, otherwise T is not an edge separator for s2
and t2. Now, [x, y, z, x] is a cycle of length 3 and x, y, z ∈ V (P). A
contradiction to the minimality of P. So, |R| cannot be three.

Case 2. |R| = 4. Let R = [x, z1, z2, y]. Clearly, at least one of the
three edges (other than {x, y}) should belong to T for T to be the edge
separator. Also, not more than one edge of these should belong to T, because
that would contradict the minimality of P. For the same reason, {z1, z2}
cannot belong to T. Hence, either {x, z1} or {y, z2} should belong to T.
Let the former (call the edge as e2) belong to T. That is, we have e1 and
e2 (adjacent edges which belong to P [b; c] and also to T) and the other two
edges (say e3 and e4–we call them as parallel edges) forming a four–cycle.
This means that we can use the parallel edges to find a path between s2
and t2 in G− E(P [p; c]), a contradiction. Hence EDP is false.

Before proceeding further we state a lemma about the vertices of attachment
of a bridge in B.

Lemma 3.5. For a bridge B ∈B, the maximum distance between any two
consecutive vertices of attachment is two.

Proof. If the distance between two consecutive vertices is greather than
two, then a chordless cycle including the subpath between these two vertices
and some vertices in B would violate Lemma 2.1.

Corollary 3.5.1. Let Bs and Bt be overlapping. Then they will have their
respective vertices of attachment on alternate vertices on P in the width of
overlap.

Proof. Otherwise the two bridges will become mutually traversable. Refer
Figure 3(b).

66 C. P. Gopalakrishan and C. Pandu Rangan

Corollary 3.5.2. More than two bridges cannot overlap in the same inter-
val.

Remark 3.1. The above corollaries imply that when Bs and Bt are
overlapping we have to construct the edge–disjoint paths between the two
pairs of vertices using only the edges of these two bridges and the edges of
their widths. The other bridges will not be of any use.

Definition 3.3. Let Bs and Bt be overlapping. Let P ′(P ′′) be a chordless
path between a(c) and b(d) in Bs(Bt). Let C(C ′) be the set of chords
connecting vertices of P and P ′(P ′′). A vertex belonging to P ′(P ′′) or P is
said to be cross–over vertex if it has at least two chords emanating from it.

For the following lemmas we assume P ′, P ′′, C, C ′′ as defined above and
Bs and Bt as overlapping.

Lemma 3.6. EDP is true in each of the following cases:

1. If s2(t2) belongs to P.
2. If there is a path connecting s2(t2) to P in Bs(Bt)−E(P ′)(E(P ′′)).

Proof. Easy.

Lemma 3.7. EDP is true in each of the following cases:

1. Let s2(t2) belong to P ′(P ′′) and further let it be connected by a chord
to P.

2. Let s2(t2) does not belong to P ′(P ′′) and there exists a path from
s2(t2) to a vertex say ls(lt) in P ′(P ′′). Further let ls(lt) be connected
by a chord to P.

Proof. Easy.

Remark 3.2. Hereafterwords, we refer to ls(lt) as quoted in the above
lemma i.e., it is the endpoint of a path from s2(t2) to P ′(P ′′). Note that
ls(lt) comes into the picture only when s2(t2) does not belong to P ′(P ′′).

Definition 3.4. s2 is called a special vertex if either of the following is true:

• Let s2 be adjacent to a or b (or both) in P ′ and further there exists no
chord between s2 to any vertex in P.

• Let s2 6∈ P ′ and ls be adjacent to a or b (or both) in P ′. Further
ls (∈ P ′) be a cutvertex and there exists no chord between ls to any
vertex in P.

Edge–disjoint paths in permutation graps 67

(a) s2 is not adjacent to a.

(b) s2 is next to a in P ′

Figure 4. Extraction of paths when interval of overlap > 1. r is a cross–
over vertex. The dotted lines indicate the two edge–disjoint paths:
(a) P [s1; r].{r, i}.P

′[i; b].P [b; t1] and P ′[s2; j].{j, r}.P [r; c].CCBt
(c, t2).

(b) P [s1; j].{j, r}.P
′[r; b], P [b; t1] and P ′[s2; r].{r, k}.CCBt

(k, t2).

A similar definition can be stated for t2 with respect to Bt.

Lemma 3.8. Let the width of overlap between Bs and Bt be greater
than one. Then EDP is true.

Proof. Let EDP be false by Lemmas 3.6. and 3.7. Then it implies that
s2(t2) or ls(lt) belongs to P ′(P ′′) and there is no chord connecting
either of these vertices to P. Refer Figure 4. We consider Bs. Let s2(ls)
not be a special vertex. Let r1(r2) be the vertices adjacent to s2 in P ′

and r ∈ P. Since the width of overlap is greater than one and by Lemma
2.1 r1, s2, r2, r form a 4–cycle. Clearly r is a cross–over vertex. We
extract paths as shown in Figure 4(a). If s2(ls) is a special vertex we
extract paths as shown in Figure 4(b). Again, since the width of overlap
being greater than one guarantees a cross–over vertex. Equivalently, we
can extract the paths working in Bt.

68 C. P. Gopalakrishan and C. Pandu Rangan

Lemma 3.9. Let width of overlap between Bs and Bt be one or zero.
If s2(t2) is not a special vertex then EDP is true.

Proof. The extraction of paths is same as given in the previous lemma
when s2(t2) is not a special vertex.

Figure 5. Extraction of paths when interval of overlap is one and both
s2 and t2 are special vertices. Q is a path connecting two vertices
(m and n) of P ′. C = {p, q, l} is the set of chords connecting vertices
of P and P ′. The presence of Q ensures the presence of edge–disjoint
paths when there are no cross–over vertices. The edge–disjoint paths are
P [s1; i].{i,m}.P ′[m; b].P [b; t1] and P ′[s2;m].Q(m,n).{n, j}.P [j; c].P ′′[c; t2].

Lemma 3.10. Let width of overlap between Bs and Bt be one or zero.
Let s2 and t2 be both special vertices. Then EDP is true only if at least
one of the following exists:

1. If there is a cross–over vertex in P or P ′ or P ′′.
2. If there exist a path in Bs(Bt) − E(P ′)(E(P ′′)) − C(C ′) between

any two vertices of P or P ′(P ′′).

Proof. If there exists a cross–over vertex, we can extract the paths as
indicated in Figure 4(b).
For the second case refer Figure 5. Since s2 and t2 are both spe-
cial vertices we can assume without loss of generality that s2 is ad-
jacent to a in P ′ and t2 is adjacent to d in P ′′. Consider the cycle
P ′(a, b).P [b; d].P ′′(d, c).P [c; a]. We have to find edge–disjoint paths be-
tween s2, t2 and a, d (this can be extended to s1, t1). Let there be a path
Q between vertices x ∈ P and y ∈ P ′. Other cases where both belong
to P or P ′ or P ′′ etc. can be dealt similarly. There exist a chord ∈ C
between x and some vertex say, x′ (can be y too) in P ′, since otherwise
it would imply the presence of a cross–over vertex in P ′ by Lemma 2.1.

Edge–disjoint paths in permutation graps 69

Let x′ be a nearer to s2 on P ′. Then, the required edge–disjoint paths
are P [a;x].Q(x, y).P ′[y; b].P [b; d] and P ′[s2;x

′].{x′, x}.P [x; c].P ′′[c; t2].
It is obvious that edge–disjoint paths cannot be extracted when no

path like Q exists.

We now give the algorithm for finding out the edge–disjoint paths
between the two pairs of vertices based on the above lemmas.

Algorithm: Two edge–disjoint paths for a general undirected permuta-
tion graph
Input: A graph G = (V,E) and four distinct vertices s1, t1, s2, t2 ∈ V.
Output: EDP is true or false.

begin

1) Find a shortest path P between s1 and t1;
2) Find all bridges B= {B1, B2,...} with respect to P ;
3) Find Bs and Bt;
/∗Bs contains s2 and Bt contains t∗2/
4) If Bs = Bt then return EDP is true;
/∗Bs 6= B∗

t /
5) If Bs and Bt are mutually traversable then return EDP is true.
/∗Bs and Bt do not share any common vertex ∗/
6) If there is a path between s2 and t2 in G−E(P) then return EDP is
true.
/∗E(P) is an edge separator for s2 and t∗2/
/∗ Henceforth we assume that Bs has endpoints a, b and Bt has
endpoints c, d.∗/
7) If Bs and Bt are non–overlapping then

begin

/∗ The order of endpoints in P , without loss of generality is a, b, c, d∗/
7.1) If there exists no path between s1 and t1 in G− E(P [b; c])

then return EDP is false;
else return EDP is true;
/∗ Lemma 3.4. gives the extraction of paths ∗/

end

8) else
/∗Bs and Bt are overlapping ∗/
begin

8.1) Find P ′, P ′′, C, C ′ as defined in Definition 3.3.
8.2) If width of overlap > 1
then return EDP is true;

70 C. P. Gopalakrishan and C. Pandu Rangan

/∗ extract paths by Lemma 3.8. ∗/
8.3) else
/∗ width of overlap is one or zero ∗/
begin

8.3.1) If (s2 is not a special vertex) or
(t2 is not a special vertex)
then return EDP is true;
/∗ extract paths by Lemma 3.9. ∗/
8.3.2) else
/∗ both s2 and t2 are special vertices ∗/
begin

8.3.2.1) If there is a cross–over vertex in P or P ′ or P ′′

then return EDP is true;
8.3.2.2) If
(there is a path in Bs − P ′ − C between any two
vertices of P or P ′) or
(there is a path in Bt − P ′′ − C ′ between any two
vertices of P or P ′′)
then return EDP is true;
/∗ extract paths by Lemma 3.10. ∗/
8.3.2.3) return EDP is false;

end

end

end

end

The proof of coreectness of the algorithm follows directly from the
corresponding lemmas. We discuss the implementation and complexity
of the algorithm in the next section.

4. Implementation and Complexity

We assume linear as O(|V |+|E|).We show that all steps in the algorithm
can be implemented in linear time.

We assume the adjacency list representation of the graph G.
Step 1 is trivial and can be found in linear time.
In step 2 for finding the bridges with respect to P, we search for

the connected components of G − P. This can be implemented using
the standard depth first search technique. Then using the adjacency list
of G the attachments of the bridges are found as vertices adjacent to
a vertex in a connected component. By scanning P and knowing the

Edge–disjoint paths in permutation graps 71

attachments of a bridge we can easily find its endpoints and hence its
width.

Step 3, which involves identifying Bs and Bt is trivial as we have
to merely see in which connected component(s) s2 and ts belong(s).

Steps 4,5 and 6 are trivial.
In step 7 we check whether Bs and Bt are overlapping or not. This
can be done by scanning their endpoints in P. Step 7.1 is also easy.

Step 8 is performed only if the bridges are overlapping. Finding
P ′, P ′′C,C ′ (step 8.1) can be done in a straightforward way. By scanning
vertices of P, P ′P ′′ and from the chords of C and C ′ we can identify
the cross–over vertices. We can also easily check the width of overlap.

Step 8.3.1 checks whether s2 or t2 are special vertices. This can
be done in a straightforward way from the definition of a special vertex.

In Step 8.3.2.2 for finding out the existence of a path in Bs−P ′−C or
in Bt−P ′′−C ′ we simply have to check for an empty graph. Outputting
the paths if EDP is true can also be done easily.

We have shown that all steps can be done linearly and hence the
complexity of the algorithm is O(|V |+ |E|).

5. Conclusion

The approach used in this paper to find two edge–disjoint paths is quite
general and hence can by tried on other classes of special graphs to obtain
efficient algorithms. Particularly, graphs having some special property
with respect to their cycles can benefit from using this approach.

We feel that this approach also lends itself to efficient parallelization,
especially if the algorithm for finding the bridges has an efficient parallel
implementation as is in the case of permutation graphs [AKP].

References

72 C. P. Gopalakrishan and C. Pandu Rangan

[AKP] K. Arvind, V. Kamakoti, C. Pandu Rangan, Efficient Parallel Algo-
rithms for Permutation Graphs, to appear in Journal of Parallel and
Distributed Computing.

[BM 80] J. A. Bondy, U.S.R. Murty, Graph Theory with Applications,
(Macmillan Press, 1976).

[C 80] A. Cypher, An approach to the k paths problem, Proc. of the 12th
STOC (1980) 211–217.

[G 80] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,
(Academic Press, 1980).

[F 85] A. Frank, Edge–disjoint paths in planar graphs, J. Combin. Theory
(B) 39 (1985) 164–178.

[GP] C. P. Gopalakrishnan, C. Pandu Rangan, The two paths problem on
permutation graphs, (submitted).

[LR 78] A. LaPaugh, R. L. Rievest, The subgraph homeomorphism problem,
Proc. of the 10th STOC (1978) 40–50.

[O 80] T. Ohtsuki, The two disjoint path problem and wire routing design,
in: Proc. of the 17th Symp. of Res. Inst. of Electrical Comm.
(1980) 257–267.

[PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of
vertices in graph, J. of the ACM 25 (1978) 1–9.

[RP] P. B. Ramprasad, C. Pandu Rangan, A new linear time algorithm
for the two path problem on planar graphs, to appear.

[S 90] A. Schwill, Nonblocking graphs: Greedy algorithms to compute dis-
joint paths, Proc. of the 7th STACS (1990) 250–262.

[S 80] Y. Shiloach, A polynomial solution to the undirected two paths prob-
lem, J. of the ACM 27 (1980) 445–456.

[S 83] J. Spinrad, Transitive orientation in O(n2) time, Proc. of Fifteenth
ACM Symposium on the Theory of Computing (1983) 457–466.

[SP 91] A. Srinivasa Rao, C. Pandu Rangan, Linear algorithms for parity
path and two path problems on circular arc graphs, BIT 31 (1991)
182–193.

[KPS 91] S. V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two
Disjoint Paths in Chordal graphs, Technical report, 2/91, February
1991, University of Oldenburg, Germany.

Received 4 May 1994

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

