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Abstract

An edge dominating set of a graph is a set D of edges such that
every edge not in D is adjacent to at least one edge in D. In this
paper we present a linear time algorithm for finding a minimum edge
dominating set of a block graph.
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1. Introduction

In this paper all graphs are simple, i.e., finite, undirected, loopless, and
without parallel edges. The concept of domination arises naturally from lo-
cation problems in operations research. The domination problem in a graph
is to find a minimum sized vertex set D such that every vertex not in D
is adjacent to at least one vertex in D. Domination and its variants have
been extensively studied during the past two decades. This paper considers
one variant, edge domination, from an algorithmic point of view. An edge
dominating set of a graph is a set D of edges such that every edge not in
D is adjacent to at least one edge in D. An independent edge dominating
set is an edge dominating set in which no two distinct edges adjacent. The
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(independent) edge domination problem is to find a minimum (independent)
edge dominating set of a graph. Mitchell and Hedetniemi [5] presented a lin-
ear time algorithm for the edge domination problem in trees. Yannakakis
and Garvil [7] also gave a linear time algorithm for the problem in trees
and proved that it is NP–complete in planar graphs or bipartite graphs of
maximum degree 3 (see also page 190 of [3]). They also mentioned that in
any graph the size of a minimum edge dominating set is equal to the size of
a minimum independent edge dominating set.

The purpose of this paper is to present a linear time algorithm for the
edge domination problem in block graphs which include trees. For technical
reasons, we actually consider a slightly more general problem introduced in
[5]. Suppose the vertex set of a graph G is partitioned into three sets, B, C,
and R, where B consists of bound vertices, C consists of covered vertices
and R consists of required vertices. A mixed edge dominating set of G (with
respect to B,C, R) is a set of edges D such that

(MED1) for every edge (u, v) incident to a bound vertex u, either
v is covered, or (u, v) ∈ D, or (u, v) is adjacent to an edge
in D;

(MED2) every required vertex is incident to an edge in D.

Note that the edge domination problem is just the mixed edge domination
with B = V and C = R = ∅. This generalization can be viewed as
a lebeling algorithm in which a vertex has a label ”bound” or ”covered” or
”required” if it is in B or C or R, respectively. The idea of a lebeling
algorithm was first introduced by Cockayne, Goodman, and Hedetniemi
for solving the domination problem in trees in 1975. It is a natural but
powerfull tool when we use an induction to treat a tree from leaves toward
to the center.

In the above definition, a graph has no mixed edge dominating set when
it contains a required vertex of degree zero. In order to resolve this difficulty
and simplify some of the arguments, we allow D to contain pseudo–edges
(x, x) even if G is loopless. If a mixed edge dominating set D contains
a pseudo–edge (x, x) and x is incident to an edge e, then (D−{(x, x)})∪
{e} is cleary a mixed edge dominating set of size at most |D|.

As a mixed edge dominating set of a graph G = (V,E) is indeed an
edge dominating set of G when V = B, in order to find a minimum
edge dominating set, we only have to label all vertices ”bound” and find
a minimum mixed edge dominating set, which we call an MMED–set for
short.
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We close this section by giving a brief review of block graphs and the block–
cut–vertex structure of a graph. In a graph G, a vertex x is a cut–
vertex if deleting x and all edges incident to it increases the number of
connected components. A block is a maximal connected subgraph without
a cut–vertex. The intersection of two distinct blocks contains at most one
vertex; and a vertex is a cut–vertex if and only if it is the intersection of
two or more blocks. Consequently, a graph with one or more cut–vertices
has at least two blocks. A block graph is a graph whose blocks are complete
graphs.

For any two vertices u and v in a graph G, any path from u to v
must pass through a unique sequence of blocks B1, ..., Br, where Bi and
Bi+1 have a common cut–vertex that is a vertex of the path for i =
1, ..., r − 1. Moreover, for any graph G containing m blocks B1, ..., Bm

and n cut–vertices c1, ..., cn, consider the graph G∗ = (V ∗, E∗) where
V ∗ = {B1, ..., Bm, c1, ... cn}

and
E∗ = {(Bi, cj) : cj ∈ Bi, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Then G∗ is a forest whose leaves are precisely the blocks with exactly one
cut–vertex in G, which we call end blocks, and whose isolated vertices are
exactly those blocks without cut–vertices in G. The block–cut–vertex struc-
ture G∗ of a graph G can be found by a depth first search in linear time
(see [1]).

2. A linear time algorithm in block graphs

In this section we first set forth three lemmas which provide the justification
for an algorithm for the mixed edge domination problem in block graphs. For
any subset S of V in a graph G = (V,E), let G−S denote the graph with
vertex set V −S and edge set {(x, y) ∈ E : x and y are in V − S}.
G − w stands for G − {w}. In the following lemmas, if the parti-
tion (B,C, R) of G is given, then G − S is considered with the parti-
tion (B−S, C−S, R−S) with some specific modification, as in Lemma 3.

Lemma 1. Suppose w is a covered vertex in a graph G. Any MMED–set
D′ of G− w is also an MMED–set of G.

Proof. D′ is clearly a mixed edge dominating set of G. It suffices to prove
that |D′| ≤ |D| for any MMED–set D of G. Let (w, x1), ..., (w, xr)
be the set of edges in D which are incident to w. Consider D′′ =
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D−{(x, x1), ... (w, xr)}∪{(x1, x1), ..., (xr, xr)}. It is clear that D′′ is a mixed
edge dominating set of G− w and |D′′| ≤ |D|. Thus |D′| ≤ |D′′| ≤ |D|.

Our algorithm for the mixed edge domination problem of a block graph
works from an end block inward to the center of the graph. So we need
lemmas which handle an end block of a graph. For the final stage, we also
need lemmas for a block without a cut–vertex. To save space, we combine
these two sets of lemmas together, as follows:

Lemma 2. Suppose G is a block graph and A is either an end block of
G with a cut–vertex x or a block without a cut–vertex and x is any vertex
of A. If D′ is an MMED–set of G − {u, v}, where u and v are two
distinct required vertices in A−x, then D′ ∪ {(u, v)} is an MMED–set of G.

Proof. Note that (u, v) is an edge since A is a complete graph. D′ ∪
{(u, v)} is clearly a mixed edge dominating set of G. So it suffices to prove
that |D′∪{(u, v)}| ≤ |D| for any MMED–set D of G. Since every required
vertex is incident to an edge in D, we may assume that (u, u1), ..., (u, ur)
with r ≥ 1 (respectively, (v, v1), ..., (v, vs) with s ≥ 1) are all edges
in D which are incident to u (respectively, v). Since u and v are
not cut–vertices of A, u1, ..., ur, v1, ..., vs are all in A and are thus
pairwise adjacent. Let D1 = D − {(u, u1), ..., (u, ur), (v, v1), ..., (v, vs)} ∪
{(u2, u2), ..., (ur, ur), (v2, v2), ..., (vs, vs)}. And let D2 = D1 ∪ {(u1, v1)}
when (u, v) /∈ D; otherwise, say (u, v) = (u, u1) = (v, v1), let D2 = D1.
It is straightforward to check that D2 is a mixed edge dominating set of
G− {u, v} and |D2| ≤ |D| − 1. Thus |D′| ≤ |D2| and so |D′ ∪ {(u, v)}| =
|D′|+ 1 ≤ |D2|+ 1 ≤ |D|.

Once we have Lemmas 1 and 2, it remains only to consider the case when
V (A− x) = {v1, ..., vn} with v1 ∈ B ∪R and v2, ..., vn ∈ B.

Lemma 3. Suppose G is a block graph and A is either an end block of G
with a cut–vertex x or a block without a cut–vertex and x is any vertex of A.
Suppose V (A− x) = {v1, ..., vn} with v1 ∈ B ∪R and v2, ... vn ∈ B.

(1) Suppose n is even or n = 1 with v1 ∈ R. If D′ is an MMED–
set of G′ ≡ G − V (A − x) with x relabeled by ”covered”, then
D∗ ≡ D′∪{(x, v1), (v2, v3), ..., (vn−2, vn−1)} is an MMED–set of G.

(2) Suppose n ≥ 3 is odd or n = 1 with v1 ∈ B, i.e., n is odd
and vn ∈ B. If D′ is an MMED–set of G′ ≡ G − V (A − x)
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with x relabeled by ”covered” (respectively, ”required”) when x
is covered (respectively, ”bound” or ”required”) in G, then D∗ ≡
D′ ∪ {(v1, v2), ..., (vn−2, vn−1)} is an MMED–set of G.

Proof. (1) D∗ is cleary a mixed edge dominating set of G. So we only
have to prove that |D∗| ≤ |D| for any MMED–set D of G. Note that
|D∗| = |D′|+dn/2e. Since n is even with v1, ..., vn ∈ B∪R or n = 1 with
v1 ∈ R, D has at least dn/2e edges in A, for each vi is only adjacent to
edges in A. By the fact that x is relabeled by”covered” in G′, D −E(A)
is a mixed edge dominating set of G′. Therefore, |D′| ≤ |D − E(A)| ≤
|D| − dn/2e and so |D∗| = |D′|+ dn/2e ≤ |D|.

(2) D∗ is a mixed edge dominating set of G by a straightforward
check. So we only have to show that |D∗| ≤ |D| for any MMED–set D of G.
Note that |D∗| = D′ + (n− 1)/2. Since v1, ..., vn ∈ B ∪R and n is odd,
D has at least (n− 1)/2 edges both of whose ends are in {v1, ..., vn}. Let
D′′ be the result of replacing (x, y) by (x, x) in D − E(A − x) when
y ∈ V (A− x). Then D′′ is a mixed edge dominating set of G′ and |D′′| ≤
|D| − (n − 1)/2. Thus, |D′| ≤ |D′′| and so |D∗| = |D′| + (n − 1)/2 ≤
|D′′|+ (n− 1)/2 ≤ |D|.

From the above lemmas, we obtain the following algorithm for the mixed
edge dominating problem in block graphs:

Algorithm ED. Find a minimum mixed edge dominating set of a block
graph.

Input: A block graph G = (V,E) whose vertex set V is partitioned into
B, C, and R.

Output: A minimum mixed edge dominating set D of G.

Begin
label(y)=b for all y ∈ B;
label(y)=c for all y ∈ C;
label(y)=r for all y ∈ R;
G′ ← G;
D ← ∅;

do while (G′ 6= ∅)
choose a block A with at most one cut–vertex in G′;
Case 1. A has only one vertex x.

if label(x)= r then
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if (x, y) ∈ E(G) then D ← D ∪ {(x, y)}
else D ← D ∪ {(x, x)};

G′ ← G′ − x;
Case 2. A has a cut–vertex x, or A has at least two vertices but

no cut–vertex (choose any x ∈ A in this case).
A′ ← V (A− x);

asumme A′ = {w1, ..., wr, u1, ..., us, y1, ..., yt}
where all label(wi) = c, all label(uj) = r, all label(yk) = b;

D ← D ∪ {(u1, u2), ..., (um−1, um)} where m = 2bs/2c;
A′ ← A′ − {w1, ..., wr, u1, ..., um};

asumme A′ = {v1, ..., vn} where label(v1) = r/b and all other
label(vi) = b;

if n is even or n = 1 with label(v1) = r
then [D ← D ∪ {(x, v1), (v2, v3), ..., (vn−2, vn−1)}; label(x)← c; ]
else [D ← D ∪ {(x1, v2), (v3, v4), ..., (vn−2, vn−1)};

if label(x)= b then label(x)← r; ]
G′ ← G′ −A′;

end while;

End.

Note that after handling a block with at least two vertices but no cut–
vertex, as in Case 2, a block of only one vertex is created, which is going to
be handled by Case 1.

Theorem 4. Algorithm ED finds a minimum mixed edge dominating set of
a block graph in linear time.

Proof. The correctness of the algorithm follows from Lemmas 1 to 3. All
steps of the algorithm obviously run in linear time except the part of choosing
a block with at most one cut–vertex. However, a depth first search (see [1])
provides a linear algorithm for constructing the block–cut–vertex structure
G∗ of G. A vertex of degree at most one in G∗ corresponds to a block
with at most one cut–vertex in G. We can, of course, merge two algorithms
together without actually producing G∗.
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