A NOTE ON CAREFUL PACKING OF A GRAPH

M. $WOŹNIAK^1$

Instytut Matematyki AGH al. Mickiewicza 30, 30–059 Kraków, Poland

Abstract

Let G be a simple graph of order n and size e(G). It is well known that if $e(G) \leq n-2$, then there is an edge-disjoint placement of two copies of G into K_n . We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into $K_n \setminus C_n$.

Keywords: pucking of graphs

1991 Mathematics Subject Classification: 05C70

1. INTRODUCTION

We shall use standard graph theory notation. We consider only finite, undirected graphs of order n = |V(G)| and size e(G) = |E(G)|. All graphs will be assumed to have neither loops nor multiple edges.

For graphs G and H we denote by $G \cup H$ the vertex disjoint union of graphs G and H and kG stands for the disjoint union of k copies of the graph G.

Suppose G_1, \ldots, G_k are graphs of order *n*. We say that there is a *pack-ing* of G_1, \ldots, G_k (into the complete graph K_n) if there exist injections $\alpha_i : V(G_i) \longrightarrow V(K_n), \ i = 1, \ldots, k$, such that $\alpha_i^*(E(G_i)) \cap \alpha_j^*(E(G_j)) = \emptyset$ for $i \neq j$, where the map $\alpha_i^* : E(G_i) \longrightarrow E(K_n)$ is induced by α_i .

A packing of k copies of a graph G will be called a k-placement of G. A packing of two copies of G i.e. a 2-placement is an *embedding* of G (in its complement \overline{G}). So, an embedding of a graph G is a permutation

¹This paper was partially supported by Polish Research Grant KBN 2 P 301 050 031

 σ on V(G) such that if an edge xy belongs to E(G) then $\sigma(x)\sigma(y)$ does not belong to E(G).

A careful packing of a graph G is a packing of C_n and two copies of G into the complete graph. In others words this is an edge-disjoint placement of two copies of G into $K_n \setminus C_n$. Geometrically speaking, if we identify the cycle C_n with a convex n-gon on the plane, the careful packing of G means the possibility to draw (edge-disjointly) two copies of G using only the internal edges.

The following theorem was proved, independently, in [2], [4] and [7].

Theorem 1. Let G = (V, E) be a graph of order n. If $|E(G)| \le n-2$, then G can be embedded in its complement \overline{G} .

The example of the star $K_{1,n-1}$ shows that Theorem 1 cannot be improved by increasing the size of G.

This result have been improved in many ways. For instance, the following theorem completely characterizes those graphs with n vertices and n-1 edges which are embeddable ([5], [6].

Theorem 2. Let G = (V, E) be a graph of order n. If $|E(G)| \le n - 1$, then either G is embeddable or G is isomorphic to one of the following graphs : $K_{1,n-1}$, $K_{1,n-4} \cup K_3$ for $n \ge 8$, $K_1 \cup 2K_3$, $K_1 \cup C_4$, $K_1 \cup K_3$ and $K_2 \cup K_3$.

Remark. For other generalization and improvements of Theorem 2 see for instance [8], [9] or [10]. The general references here are [11] and [1] (see also [12]).

Our purpose is to prove the following

Theorem 3. Let G be a graph of order $n, n \ge 6$. If $e(G) \le n-2$, then there exists a careful packing of G except for two graphs of order 6: $K_3 \cup K_2 \cup K_1$ and $C_4 \cup 2K_1$, and for two families of graphs: $K_{1,n-2} \cup K_1$ and $K_{1,n-3} \cup K_2$.

The proof the theorem is given in the next section.

Corollary 4. Let G be a graph of order $n, n \ge 3$. If $e(G) \le n-3$, then there exists a careful packing of G.

Proof. The corollary is evident for n = 3 and 4 and easy to verify for n = 5. For $n \ge 6$ it follows from Theorem 3.

We finish this section with some remarks.

Observe first that if we want to pack two copies of a graph G together with the cycle C_n , then the following necessary condition must hold:

$$\Delta(G) + \delta(G) \le n - 3.$$

For, the vertex u with $d(u) = \Delta(G)$ must be placed with another vertex of G and with a vertex of C_n of degree 2. Another evident, necessary condition is determined by the number of edges in the complete graph K_n . We must have $2(n-2) + n \leq {n \choose 2}$ which implies $n \geq 6$.

So, from this point of view, there are only two "small" exceptional graphs in Theorem 3.

Since it is very easy to find a 2-placement for exceptional graphs of Theorem 3, so this theorem is an improvement of Theorem 1. On the other hand, Corollary 4 can also be considered as an improvement of the following theorem of Ore (cf.[3]).

Theorem 5. If G is a simple graph of order $n \ge 3$ and $e(G) > \binom{n-1}{2} + 1$, then G is Hamiltonian.

Indeed, restated in terms of packing, Theorem 5 states that if G is a graph of order $n, n \geq 3$, and $e(G) \leq n-3$, then there is a packing of G into $K_n \setminus C_n$, whereas Corollary 4 ensures a packing of two copies of G into $K_n \setminus C_n$.

2. Proof

We start with some simple observations formulated as lemmas.

Lemma 6. Let G be a graph composed of the cycle C_k and one vertex, say u, not on the cycle. Denote by $|N(u, C_k)|$ the number of edges connecting u with C_k . If $|N(u, C_k)| > \frac{k}{2}$, then the cycle C_k can be extended to a cycle of length k + 1 passing through u.

Lemma 7. Let G be a graph composed of the cycle C_k and two vertices, say u, v, not on the cycle. If

- 1. $uv \in E(G)$,
- 2. $|N(u, C_k)| \ge 1$, $|N(v, C_k)| \ge 1$,
- 3. $|N(u, C_k)| + |N(v, C_k)| \ge k + 1$,

then the cycle C_k can be extended to a cycle of length k+2 passing through u and v.

Proof. It is easy to see that at least one of the neighbours of the vertex v on the cycle C_k has as its neighbour on the cycle C_k , a vertex connected by an edge with the vertex u. The possibility to extend the cycle C_k to the cycle C_{k+2} is now evident.

Lemma 8. If the graph G has an end-vertex, say x, adjacent to the vertex, say y, of degree $d(y) \geq \frac{n-1}{2}$ and there is a careful packing of $G' = G \setminus \{x\}$, then there is a careful packing of the graph G.

Proof. Observe first that in the careful packing of G' the image of y is distinct from y. Indeed, otherwise we would have too many edges adjacent to y in K_{n-1} (two edges of C_{n-1} and at least n-2 edges belonging to two copies of G').

Thus it is easy to extend the packing of G' (by putting x on x) and then to extend C_{n-1} by applying Lemma 6 to the complement of the graph G.

Proof of Theorem 3. In the remainder of this section we adopt the following convention: Given a careful packing of a graph G, we say that an edge e of K_n is black or blue if it belongs to the first or second copy of G, respectively, and that an edge e of K_n is red if it belongs to the corresponding cycle C_n .

The proof is by induction on n. Without loss of generality we may assume that all the graphs under consideration are of maximum size n-2. Let us start with small values of n i.e. n = 6 and n = 7. It is easy to see that there are five graphs of order 6 and size 4 which are not exceptional: $K_1 \cup P_5$, $K_1 \cup S'_5$, $K_2 \cup P_4$, $2P_3$ and $2K_1 \cup (S_3 + e)$. The careful packings of these graphs are depicted in Figure 1 (the edges of C_6 are not marked). Observe that they can be used to obtain the careful packings of (n, n-2)graphs for n = 7. We can also use Lemma 8. The details are left to the reader.

Figure 1. Carefull packing of graphs of order 6

Suppose now that the theorem is true for all n' < n and let G be an (n, n-2)-graph. Assume also that G is not one of the exceptional graphs. We shall consider two main cases.

Case 1. G has two independent end-edges.

Denote the independent end-edges of G by uu' and vv', u, v being the corresponding end-vertices of G. Consider now the graph $G' = G \setminus \{u, v\}$. Suppose that there exists a careful packing for G', say σ' . It is easy to extend the bijection σ' to a packing of G. Moreover, since the edge uv is neither black nor blue, we can consider it as a red one. We assign the red colour also to n - 4 edges connecting u with C_{n-2} and to n - 4 edges connecting v with C_{n-2} . By Lemma 7 (with k = n - 2) the careful packing of G exists. The case where G' is an exceptional graph will be considered below as Case 3.

Case 2. G has not two independent end-edges.

Since G has at least two tree components, the above condition implies that at least one of them is trivial and the other is a star. Let u be an isolated vertex of G and let x be a vertex defined by

$$d_G(x) = \min\{d_G(y) : y \in V(G) , d_G(y) \ge 2\}$$

We consider the graph $G' = G \setminus \{u, x\}$. Suppose that G' is not one of the exceptional graphs; other cases are considered below as *Case* 3. Then there exists a careful packing for G', say σ' . It is evident that by putting x on u and u on x we extend σ' to a packing of G. We may assume that the vertices x and u send n - 2 - d(x) red edges to the red cycle C_{n-2} contained in G'. We can apply Lemma 7 and obtain a careful packing of G if $2(n - 2 - d_G(x)) \ge n - 1$. Hence $n - 3 \ge 2d_G(x)$.

Thus, we may assume that

$$(*) d_G(x) \ge \frac{n-2}{2}$$

So, for $n \ge 7, d_G(x) \ge 3$. Consider first the case where G has two trivial components.

Case 2 (a) G has two isolated vertices, say u, v.

Consider first the case n = 8. The case by case examination shows that: either G contains an end-vertex such that we can apply Lemma 8, or G is such that the graph $G' = G \setminus \{u, x\}$ is exceptional (see *Case* 3). So, we may assume that $n \ge 9$. Consider now the graph $G_1 = G \setminus \{u, v, x\}$. If G_1 is not one of the exceptional graphs, we can apply the induction hypothesis. Let σ_1 be a careful packing of G_1 . Denote by y_1 a vertex of G_1 non adjacent to x (such a vertex exists by the definition of x). Without loss of generality we may assume that y_1 is the first vertex on the red cycle $y_1, y_2, \ldots, y_{n-3}$ corresponding to the careful packing of G_1 . Then the cycle $xy_1y_2 \ldots y_{n-3}uvx$ can be considered as a red cycle of the careful packing of G, say σ , obtained from σ' by putting $\sigma(x) = v$, $\sigma(v) = x$, $\sigma(u) = u$ and $\sigma(w) = \sigma'(w)$ for $w \in V(G) \setminus \{u, v, x\}$.

Case 2 (b) G has only one isolated vertex.

Hence G is of the form $K_1 \cup K_{1,r} \cup R$ where $r \ge 1$ and the graph R has no isolated vertices. Moreover, since by Case 1, R contains no end-vertices we may assume, by (*), that either all vertices of R are of a degree greater than or equal to $\frac{n-2}{2}$, or R is empty. In the first case, for n > 6, this contradicts the fact that the average degree of R is equal to 2. In the second case G is exceptional, a contradiction.

Case 3. G' is one of the exceptional graphs, where G' denotes one of the graphs defined in Cases 1 or 2 $(n \ge 8)$.

We shall need some additional notations. Namely, by S'_p we denote a tree of order p obtained by subdividing one of the edges of the star $K_{1,p-2}$ and by $(K_{1,p-1} + e)$ we denote, as usually, the graph of order pobtained by adding one edge to the edge-set of the star $K_{1,p-1}$. A NOTE ON CAREFUL PACKING OF A GRAPH

Figure 2. Carefull packing of $K_2 \cup P_3 \cup C_3$ and $K_1 \cup K_{1,3} \cup C_3$

Without loss of generality we may assume that every other choice of two or three (for $n \ge 9$) vertices in a way described in *Cases* 1 and 2 leads also to one of the exceptional graphs. Of course, we can proceed as in *Case* 2 also in the case where the graph G has two independent end-edges.

Recall that G itself is not an exceptional graph.

The case by case examination shows that then G belongs to one of the following families of graphs: $P_3 \cup K_{1,n-4}$, $K_1 \cup S'_{n-1}$, $2K_1 \cup (K_{1,n-3} + e)$, $K_1 \cup K_3 \cup K_{1,n-5}$, or n = 8 and G is isomorphic to $4K_1 \cup K_4$, $2K_1 \cup 2K_3$ $2K_2 \cup C_4$, $K_2 \cup P_3 \cup C_3$ or $3K_1 \cup K_{2,3}$.

Observe that in all graphs belonging to the above mentioned families, except for $K_1 \cup K_3 \cup K_{1,3}$, there is a vertex of a degree greater than or equal to n-4, so we can apply Lemma 8 (since $n \ge 8$).

The careful packings of $4K_1 \cup K_4$, $2K_2 \cup C_4$ or $2K_1 \cup 2K_3$ are very symmetric and easy to find.

The careful packing of $K_2 \cup P_3 \cup C_3$ as well as the careful packing of $K_1 \cup K_3 \cup K_{1,3}$ are depicted in Fig. 2.

Finally, the careful packing of $3K_1 \cup K_{2,3}$ can be easily obtained from the careful packing of $2K_1 \cup K_{1,3}$ into K_6 .

This completes the proof of the theorem.

-

References

- [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
- [2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin Theory (B) 25 (1978) 105–124.
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (North-Holland, New York, 1976).

- [4] D. Burns and S. Schuster, Every (p, p-2)- graph is contained in its complement, J. Graph Theory 1 (1977) 277–279.
- [5] D. Burns and S. Schuster, *Embedding* (n, n 1)- graphs in their complements, Israel J. Math. **30** (1978) 313-320.
- [6] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133–142.
- [7] N. Sauer and J. Spencer, *Edge disjoint placement of graphs*, J. Combin Theory (B) 25 (1978) 295–302.
- [8] M. Woźniak, Embedding of graphs in the complements of their squares, in: J. Nessetřil and M. Fiedler, eds, Fourth Czechoslovakian Symp. on Combinatorics, Graphs and Complexity, (Elsevier Science Publishers B.V.,1992) 345–349.
- [9] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233–241.
- [10] M. Woźniak and A.P. Wojda, *Triple placement of graphs*, Graphs and Combinatorics 9 (1993) 85–91.
- [11] H.P. Yap, Some Topics In Graph Theory (London Mathematical Society, Lectures Notes Series 108, Cambridge University Press, Cambridge 1986).
- [12] H.P. Yap, Packing of graphs a survey, Discrete Math. 72 (1988) 395–404.

Received 26 April 1994 Revised 14 July 1994