A NOTE ON CAREFUL PACKING OF A GRAPH

M. Woźniak ${ }^{1}$
Instytut Matematyki AGH
al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

Let G be a simple graph of order n and size $e(G)$. It is well known that if $e(G) \leq n-2$, then there is an edge-disjoint placement of two copies of G into K_{n}. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into $K_{n} \backslash C_{n}$.

Keywords: pucking of graphs
1991 Mathematics Subject Classification: 05C70

1. Introduction

We shall use standard graph theory notation. We consider only finite, undirected graphs of order $n=|V(G)|$ and size $e(G)=|E(G)|$. All graphs will be assumed to have neither loops nor multiple edges.

For graphs G and H we denote by $G \cup H$ the vertex disjoint union of graphs G and H and $k G$ stands for the disjoint union of k copies of the graph G.

Suppose G_{1}, \ldots, G_{k} are graphs of order n. We say that there is a packing of G_{1}, \ldots, G_{k} (into the complete graph K_{n}) if there exist injections $\alpha_{i}: V\left(G_{i}\right) \longrightarrow V\left(K_{n}\right), i=1, \ldots, k$, such that $\alpha_{i}^{*}\left(E\left(G_{i}\right)\right) \cap \alpha_{j}^{*}\left(E\left(G_{j}\right)\right)=$ \emptyset for $i \neq j$, where the map $\alpha_{i}^{*}: E\left(G_{i}\right) \longrightarrow E\left(K_{n}\right)$ is induced by α_{i}.

A packing of k copies of a graph G will be called a k-placement of G. A packing of two copies of G i.e. a $2-$ placement is an embedding of G (in its complement \bar{G}). So, an embedding of a graph G is a permutation

[^0]σ on $V(G)$ such that if an edge $x y$ belongs to $E(G)$ then $\sigma(x) \sigma(y)$ does not belong to $E(G)$.

A careful packing of a graph G is a packing of C_{n} and two copies of G into the complete graph. In others words this is an edge-disjoint placement of two copies of G into $K_{n} \backslash C_{n}$. Geometrically speaking, if we identify the cycle C_{n} with a convex n-gon on the plane, the careful packing of G means the possibility to draw (edge-disjointly) two copies of G using only the internal edges.

The following theorem was proved, independently, in [2], [4] and [7].
Theorem 1. Let $G=(V, E)$ be a graph of order n. If $|E(G)| \leq n-2$, then G can be embedded in its complement \bar{G}.

The example of the star $K_{1, n-1}$ shows that Theorem 1 cannot be improved by increasing the size of G.

This result have been improved in many ways. For instance, the following theorem completely characterizes those graphs with n vertices and $n-1$ edges which are embeddable ([5], [6].

Theorem 2. Let $G=(V, E)$ be a graph of order n. If $|E(G)| \leq n-1$, then either G is embeddable or G is isomorphic to one of the following graphs : $K_{1, n-1}, K_{1, n-4} \cup K_{3} \quad$ for $n \geq 8, K_{1} \cup 2 K_{3}, K_{1} \cup C_{4}, K_{1} \cup K_{3}$ and $K_{2} \cup K_{3}$.

Remark. For other generalization and improvements of Theorem 2 see for instance [8], [9] or [10]. The general references here are [11] and [1] (see also [12]).

Our purpose is to prove the following

Theorem 3. Let G be a graph of order $n, \quad n \geq 6$. If $e(G) \leq n-2$, then there exists a careful packing of G except for two graphs of order 6 : $K_{3} \cup K_{2} \cup K_{1}$ and $C_{4} \cup 2 K_{1}$, and for two families of graphs: $K_{1, n-2} \cup K_{1}$ and $K_{1, n-3} \cup K_{2}$.

The proof the theorem is given in the next section.

Corollary 4. Let G be a graph of order $n, \quad n \geq 3$. If $e(G) \leq n-3$, then there exists a careful packing of G.

Proof. The corollary is evident for $n=3$ and 4 and easy to verify for $n=5$. For $n \geq 6$ it follows from Theorem 3 .

We finish this section with some remarks.
Observe first that if we want to pack two copies of a graph G together with the cycle C_{n}, then the following necessary condition must hold:

$$
\Delta(G)+\delta(G) \leq n-3
$$

For, the vertex u with $d(u)=\Delta(G)$ must be placed with another vertex of G and with a vertex of C_{n} of degree 2 . Another evident, necessary condition is determined by the number of edges in the complete graph K_{n}. We must have $2(n-2)+n \leq\binom{ n}{2}$ which implies $n \geq 6$.

So, from this point of view, there are only two "small" exceptional graphs in Theorem 3.

Since it is very easy to find a 2 -placement for exceptional graphs of Theorem 3, so this theorem is an improvement of Theorem 1. On the other hand, Corollary 4 can also be considered as an improvement of the following theorem of Ore (cf.[3]).

Theorem 5. If G is a simple graph of order $n \geq 3$ and $e(G)>\binom{n-1}{2}+1$, then G is Hamiltonian.

Indeed, restated in terms of packing, Theorem 5 states that if G is a graph of order $n, \quad n \geq 3$, and $e(G) \leq n-3$, then there is a packing of G into $K_{n} \backslash C_{n}$, whereas Corollary 4 ensures a packing of two copies of G into $K_{n} \backslash C_{n}$.

2. Proof

We start with some simple observations formulated as lemmas.
Lemma 6. Let G be a graph composed of the cycle C_{k} and one vertex, say u, not on the cycle. Denote by $\left|N\left(u, C_{k}\right)\right|$ the number of edges connecting u with C_{k}. If $\left|N\left(u, C_{k}\right)\right|>\frac{k}{2}$, then the cycle C_{k} can be extended to a cycle of length $k+1$ passing through u.

Lemma 7. Let G be a graph composed of the cycle C_{k} and two vertices, say u, v, not on the cycle. If

1. $u v \in E(G)$,
2. $\left|N\left(u, C_{k}\right)\right| \geq 1,\left|N\left(v, C_{k}\right)\right| \geq 1$,
3. $\left|N\left(u, C_{k}\right)\right|+\left|N\left(v, C_{k}\right)\right| \geq k+1$,
then the cycle C_{k} can be extended to a cycle of length $k+2$ passing through u and v.

Proof. It is easy to see that at least one of the neighbours of the vertex v on the cycle C_{k} has as its neighbour on the cycle C_{k}, a vertex connected by an edge with the vertex u. The possibility to extend the cycle C_{k} to the cycle C_{k+2} is now evident.

Lemma 8. If the graph G has an end-vertex, say x, adjacent to the vertex, say y, of degree $d(y) \geq \frac{n-1}{2}$ and there is a careful packing of $G^{\prime}=G \backslash\{x\}$, then there is a careful packing of the graph G.

Proof. Observe first that in the careful packing of G^{\prime} the image of y is distinct from y. Indeed, otherwise we would have too many edges adjacent to y in K_{n-1} (two edges of C_{n-1} and at least $n-2$ edges belonging to two copies of G^{\prime}).

Thus it is easy to extend the packing of G^{\prime} (by putting x on x) and then to extend C_{n-1} by applying Lemma 6 to the complement of the graph G.

Proof of Theorem 3. In the remainder of this section we adopt the following convention: Given a careful packing of a graph G, we say that an edge e of K_{n} is black or blue if it belongs to the first or second copy of G, respectively, and that an edge e of K_{n} is red if it belongs to the corresponding cycle C_{n}.

The proof is by induction on n. Without loss of generality we may assume that all the graphs under consideration are of maximum size $n-2$. Let us start with small values of n i.e. $n=6$ and $n=7$. It is easy to see that there are five graphs of order 6 and size 4 which are not exceptional: $K_{1} \cup P_{5}, K_{1} \cup S_{5}^{\prime}, K_{2} \cup P_{4}, 2 P_{3}$ and $2 K_{1} \cup\left(S_{3}+e\right)$. The careful packings of these graphs are depicted in Figure 1 (the edges of C_{6} are not marked). Observe that they can be used to obtain the careful packings of ($n, n-2$)graphs for $n=7$. We can also use Lemma 8. The details are left to the reader.

Figure 1. Carefull packing of graphs of order 6

Suppose now that the theorem is true for all $n^{\prime}<n$ and let G be an $(n, n-2)$-graph. Assume also that G is not one of the exceptional graphs. We shall consider two main cases.

Case 1. G has two independent end-edges.
Denote the independent end-edges of G by $u u^{\prime}$ and $v v^{\prime}, u, v$ being the corresponding end-vertices of G. Consider now the graph $G^{\prime}=G \backslash\{u, v\}$. Suppose that there exists a careful packing for G^{\prime}, say σ^{\prime}. It is easy to extend the bijection σ^{\prime} to a packing of G. Moreover, since the edge $u v$ is neither black nor blue, we can consider it as a red one. We assign the red colour also to $n-4$ edges connecting u with C_{n-2} and to $n-4$ edges connecting v with C_{n-2}. By Lemma 7 (with $k=n-2$) the careful packing of G exists. The case where G^{\prime} is an exceptional graph will be considered below as Case 3 .

Case 2. G has not two independent end-edges.
Since G has at least two tree components, the above condition implies that at least one of them is trivial and the other is a star. Let u be an isolated vertex of G and let x be a vertex defined by

$$
d_{G}(x)=\min \left\{d_{G}(y): y \in V(G), d_{G}(y) \geq 2\right\}
$$

We consider the graph $G^{\prime}=G \backslash\{u, x\}$. Suppose that G^{\prime} is not one of the exceptional graphs; other cases are considered below as Case 3. Then there exists a careful packing for G^{\prime}, say σ^{\prime}. It is evident that by putting x on u and u on x we extend σ^{\prime} to a packing of G. We may assume that the vertices x and u send $n-2-d(x)$ red edges to the red cycle C_{n-2} contained in G^{\prime}. We can apply Lemma 7 and obtain a careful packing of G if $2\left(n-2-d_{G}(x)\right) \geq n-1$. Hence $n-3 \geq 2 d_{G}(x)$.

Thus, we may assume that

$$
\begin{equation*}
d_{G}(x) \geq \frac{n-2}{2} \tag{*}
\end{equation*}
$$

So, for $n \geq 7, d_{G}(x) \geq 3$. Consider first the case where G has two trivial components.

Case 2 (a) G has two isolated vertices, say u, v.
Consider first the case $n=8$. The case by case examination shows that: either G contains an end-vertex such that we can apply Lemma 8 , or G is such that the graph $G^{\prime}=G \backslash\{u, x\}$ is exceptional (see Case 3). So, we may assume that $n \geq 9$. Consider now the graph $G_{1}=G \backslash\{u, v, x\}$. If G_{1} is not one of the exceptional graphs, we can apply the induction hypothesis. Let σ_{1} be a careful packing of G_{1}. Denote by y_{1} a vertex of G_{1} non adjacent to x (such a vertex exists by the definition of x). Without loss of generality we may assume that y_{1} is the first vertex on the red cycle $y_{1}, y_{2}, \ldots, y_{n-3}$ corresponding to the careful packing of G_{1}. Then the cycle $x y_{1} y_{2} \ldots y_{n-3} u v x$ can be considered as a red cycle of the careful packing of G, say σ, obtained from σ^{\prime} by putting $\sigma(x)=v, \sigma(v)=x, \sigma(u)=u$ and $\sigma(w)=\sigma^{\prime}(w)$ for $w \in V(G) \backslash\{u, v, x\}$.

Case 2 (b) G has only one isolated vertex.
Hence G is of the form $K_{1} \cup K_{1, r} \cup R$ where $r \geq 1$ and the graph R has no isolated vertices. Moreover, since by Case $1, R$ contains no end-vertices we may assume, by $\left({ }^{*}\right)$, that either all vertices of R are of a degree greater than or equal to $\frac{n-2}{2}$, or R is empty. In the first case, for $n>6$, this contradicts the fact that the average degree of R is equal to 2 . In the second case G is exceptional, a contradiction.

Case 3. G^{\prime} is one of the exceptional graphs, where G^{\prime} denotes one of the graphs defined in Cases 1 or $2(n \geq 8)$.

We shall need some additional notations. Namely, by S_{p}^{\prime} we denote a tree of order p obtained by subdividing one of the edges of the star $K_{1, p-2}$ and by ($K_{1, p-1}+e$) we denote, as usually, the graph of order p obtained by adding one edge to the edge-set of the star $K_{1, p-1}$.

Figure 2. Carefull packing of $K_{2} \cup P_{3} \cup C_{3}$ and $K_{1} \cup K_{1,3} \cup C_{3}$

Without loss of generality we may assume that every other choice of two or three (for $n \geq 9$) vertices in a way described in Cases 1 and 2 leads also to one of the exceptional graphs. Of course, we can proceed as in Case 2 also in the case where the graph G has two independent end-edges.

Recall that G itself is not an exceptional graph.
The case by case examination shows that then G belongs to one of the following families of graphs: $P_{3} \cup K_{1, n-4}, K_{1} \cup S_{n-1}^{\prime}, 2 K_{1} \cup\left(K_{1, n-3}+e\right)$, $K_{1} \cup K_{3} \cup K_{1, n-5}$, or $n=8$ and G is isomorphic to $4 K_{1} \cup K_{4}, 2 K_{1} \cup 2 K_{3}$ $2 K_{2} \cup C_{4}, K_{2} \cup P_{3} \cup C_{3}$ or $3 K_{1} \cup K_{2,3}$.

Observe that in all graphs belonging to the above mentioned families, except for $K_{1} \cup K_{3} \cup K_{1,3}$, there is a vertex of a degree greater than or equal to $n-4$, so we can apply Lemma 8 (since $n \geq 8$).

The careful packings of $4 K_{1} \cup K_{4}, 2 K_{2} \cup C_{4}$ or $2 K_{1} \cup 2 K_{3}$ are very symmetric and easy to find.

The careful packing of $K_{2} \cup P_{3} \cup C_{3}$ as well as the careful packing of $K_{1} \cup K_{3} \cup K_{1,3}$ are depicted in Fig. 2.

Finally, the careful packing of $3 K_{1} \cup K_{2,3}$ can be easily obtained from the careful packing of $2 K_{1} \cup K_{1,3}$ into K_{6}.

This completes the proof of the theorem.

References

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin Theory (B) 25 (1978) 105-124.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (NorthHolland, New York, 1976).
[4] D. Burns and S. Schuster, Every ($p, p-2$) - graph is contained in its complement, J. Graph Theory 1 (1977) 277-279.
[5] D. Burns and S. Schuster, Embedding ($n, n-1$)- graphs in their complements, Israel J. Math. 30 (1978) 313-320.
[6] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.
[7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin Theory (B) $\mathbf{2 5}$ (1978) 295-302.
[8] M. Woźniak, Embedding of graphs in the complements of their squares, in: J. Nessetřil and M. Fiedler, eds, Fourth Czechoslovakian Symp. on Combinatorics, Graphs and Complexity, (Elsevier Science Publishers B.V.,1992) 345-349.
[9] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241.
[10] M. Woźniak and A.P. Wojda, Triple placement of graphs, Graphs and Combinatorics 9 (1993) 85-91.
[11] H.P. Yap, Some Topics In Graph Theory (London Mathematical Society, Lectures Notes Series 108, Cambridge University Press, Cambridge 1986).
[12] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404.

[^0]: ${ }^{1}$ This paper was partially supported by Polish Research Grant KBN 2 P 301050031

