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Abstract

For each fixed pair α, c > 0 let INDEPENDENT SET (m ≤ cnα)
and INDEPENDENT SET (m ≥ (

n
2

) − cnα) be the problem INDE-
PENDENT SET restricted to graphs on n vertices with m ≤ cnα

or m ≥ (
n
2

)− cnα edges, respectively. Analogously, HAMILTONIAN
CIRCUIT (m ≤ n + cnα) and HAMILTONIAN PATH (m ≤ n + cnα)
are the problems HAMILTONIAN CIRCUIT and HAMILTONIAN
PATH restricted to graphs with m ≤ n + cnα edges. For each ε > 0
let HAMILTONIAN CIRCUIT (m ≥ (1− ε)

(
n
2

)
) and HAMILTONIAN

PATH (m ≥ (1 − ε)
(
n
2

)
) be the problems HAMILTONIAN CIRCUIT

and HAMILTONIAN PATH restricted to graphs with m ≥ (1− ε)
(
n
2

)
edges.

We prove that these six restricted problems remain NP–complete.
Finally, we consider sufficient conditions for a graph to have a Hamil-
tonian circuit. These conditions are based on degree sums and neigh-
borhood unions of independent vertices, respectively. Lowering the
required bounds the problem HAMILTONIAN CIRCUIT jumps from
’easy’ to ’NP–complete’.
Keywords: Computational Complexity, NP–Completeness, Hamilto-
nian Circuit, Hamiltonian Path, Independent Set
1991 Mathematics Subject Classification: 05C, 68Q

1. Motivation and Notation

One of the most well–known problems in the theory of NP–completeness is
the k–Satisfiability problem:
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k–SATISFIABILITY

INSTANCE: A set V of Boolean variables and a formula F of r different
clauses in conjunctive normal form where each clause contains
k literals in disjunctive normal form.

QUESTION: Is there a satisfying truth assignment for F?

Recently it has been shown that k–SATISFIABILITY remains NP–com-
plete when restricted to sparse as well as to dense formulas (cf. [7],[9]).

Let (k, s)–SATISFIABILITY be the k–SATISFIABILITY problem
restricted to formulas F where each variable occurs at most s times.
In [7] Kratochv́ıl, Savický and Tuza proved the following result for sparse
formulas.

Theorem 1.1. For each integer k ≥ 3 there exists an integer f(k) such
that

1. every instance of (k,s)–SATISFIABILITY is satisfiable for s ≤ f(k);
2. (k, s)–SATISFIABILITY is NP–complete for s ≥ f(k) + 1.

Note that (k, s)–SATISFIABILITY is solvable in polynomial time for each
s ≤ k (cf. [7]).

Let k–SATISFIABILITY (r > r0) be the k–SATISFIABILITY prob-
lem restricted to formulas F with r > r0 clauses. In [9] we proved the
following result for dense formulas.

Theorem 1.2. For each k ≥ 3 and each l ≥ 4 with n ≥ lk2 k–SATIS-
FIABILITY (r >

(n
k

)
(2k − 1− 4/k)) is NP–complete.

Note that each formula F of k–SATISFIABILITY (r >
(n
k

)
(2k − 1)) is

unsatisfiable since there always exists a set of k variables such that all 2k

possible clauses over the corresponding literals belong to F .

In section 2 we prove that the problems INDEPENDENT SET, HAMILTO-
NIAN CIRCUIT and HAMILTONIAN PATH remain NP–complete when
restricted to sparse or dense graphs. In section 3 we state several sufficient
conditions in terms of degree–sums and neighborhood unions of vertices
for a graph to have a Hamiltonian circuit, which can be checked in polyno-
mial time. We show that HAMILTONIAN CIRCUIT becomes NP–complete
when the corresponding bounds required for the degree–sums and neighbor-
hood unions are lowered.
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In this paper we only consider undirected and simple graphs (i.e., graphs
without loops and multiple edges). Let G be a graph. By V (G) we denote
the vertex–set of G, and by E(G) the edge–set of G. The cardinalities of
V (G) and E(G) will be denoted by n and m, respectively. For a vertex
v ∈ V (G) the neighborhood N(v) of v is the set of all vertices adjacent to
v. The degree of a vertex v is denoted by dG(v) = |N(v)|, or shortly, d(v).
The number of vertices in a maximum independent set of G is denoted by
α(G). For k ≤ α(G) we define

σk(G) = min{
∑

v∈S

d(v) | S is an independent set of k vertices}

and

NCk(G) = min{|
⋃

v∈S

N(v)| | S is an independent set of k vertices}.

In these definitions we follow the convention that the minimum over an
empty set is +∞.

For further terminology and notations not defined here we refer to [6]
(concerning complexity) and to [2](concerning graph theory), respectively.

2. Three Problems in Graph Theory

We now show that the problems INDEPENDENT SET, HAMILTONIAN
CIRCUIT and HAMILTONIAN PATH remain NP–complete when re-
stricted to sparse or dense graphs. Our technique of proof will be standard
as described in [6]. In each proof we choose a known NP–complete problem
Π2 and transform it to one of the considered problems Π1. Clearly, in all
cases our problem Π1 belongs to NP under restriction.

For each fixed pair α, c > 0 let INDEPENDENT SET (m ≤ cnα) and
INDEPENDENT SET (m ≥ (n

2

) − cnα) be the problem INDEPENDENT
SET restricted to graphs with m ≤ cnα or m ≥ (n

2

) − cnα edges, respec-
tively. Analogously, for each fixed pair α, c > 0, HAMILTONIAN CIRCUIT
(m ≤ n + cnα) and HAMILTONIAN PATH (m ≤ n + cnα) are the prob-
lems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted to
graphs with m ≤ n + cnα edges. For each ε > 0 let HAMILTONIAN
CIRCUIT (m ≥ (1 − ε)

(n
2

)
) and HAMILTONIAN PATH (m ≥ (1 − ε)

(n
2

)
)

be the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH
restricted to graphs with m ≥ (1− ε)

(n
2

)
edges.
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Theorem 2.1. INDEPENDENT SET (m ≤ cnα) is NP–complete.

Proof. We transform INDEPENDENT SET to INDEPENDENT SET
(m ≤ cnα). Let G1 = (V1, E1) be a graph on n1 vertices and m1

edges making up an arbitrary instance of INDEPENDENT SET. We now
construct a graph G2 = (V2, E2) on n2 vertices and m2 = m1 edges by
adding n2 − n1 isolated vertices such that n2 ≥ max{n1, d(1

c

(n1

2

)
)1/αe}.

Then α(G) = α(G1) + (n2 − n1) and G2 has m2 = m1 ≤
(n1

2

) ≤ cnα
2

edges. For each fixed pair α, c > 0 we have m2 = O(n2
2) which is bounded

above by a polynomial function of n1, since m1 = O(n2
1).

For each positive K1 ≤ n1 let K2 = K1+(n2−n1). Then 0 < K2 ≤ n2

and G2 has an independent set of cardinality K2 or more if and only if
G1 has an independent set of cardinality K1 or more.

Note that INDEPENDENT SET (m ≤ k) can be solved in time O(nk).

Theorem 2.2. INDEPENDENT SET (m ≥ (n
2

)− cnα) is NP–complete.

Proof. We transform INDEPENDENT SET to INDEPENDENT SET
(m ≥ (n

2

) − cnα) and proceed as in the proof of theorem 2.1. This time
we add a complete graph Kp on p = n2 − n1 vertices v1, v2, . . . , vp and
join them to all vertices of G1. Thus G2 has m2 =

(n2

2

) − (n1

2

)
+ m1 ≥(n2

2

) − (n1

2

) ≥ (n2

2

) − cnα
2 edges. Furthermore, α(G1) = α(G2) by this

construction. Now let K ≤ n1 be positive. Then G2 has an independent
set of cardinality K or more if and only if G1 has an independent set of
cardinality K or more.

Note that INDEPENDENT SET (m ≥ (n
2

) − k) can be solved in time
O(nk).

Remark. Considering the problem CLIQUE in the complement of G,
theorems 2.1 and 2.2 show that for each fixed pair α, c > 0 CLIQUE
remains NP–complete for graphs on n vertices and m ≤ cnα or m ≥(n
2

)− cnα edges, respectively.

Theorem 2.3. HAMILTONIAN CIRCUIT (m ≤ n + cnα) is NP–
complete.
Proof. We transform HAMILTONIAN PATH to HAMILTONIAN CIR-
CUIT (m ≤ n+cnα). Let G1 = (V1, E1) be a graph on n1 vertices and m1

edges making up an arbitrary instance of HAMILTONIAN PATH. We now
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construct a graph G2 = (V2, E2) on n2 vertices and m2 edges by adding
p ≥ max{2, dn2/α

1 c−1/αe − n1} vertices v1, v2, . . . , vp inducing the path
v1v2 . . . vp and joining v1 and vp to all vertices of G1. Thus n2 = n1 + p
and m2 = m1+p−1+2n1 = m1+n2+n1−1 ≤ n2+(n1−1)+

(n1

2

)
< n2+n2

1.
Now n2 ≥ n

2/α
1 c−1/α ⇔ n2

1 ≤ cnα
2 and thus m2 ≤ n2 + cnα

2 . Furthermore,
for each fixed pair α, c > 0 we have m2 = O(n2

2) which is bounded above
by a polynomial function of n1.

If G2 has a Hamiltonian circuit C, then C contains the path u1v1v2 . . .
vpu2 for two vertices u1, u2 ∈ V1. Hence C contains also a path from u1

to u2 in G1 containing all vertices of G1. Thus G1 has a Hamiltonian
path. Conversely, if G1 has a Hamiltonian path, say u1u2 . . . un1 , then
u1u2 . . . un1v1v2 . . . vpu1 is a Hamiltonian circuit in G2. Thus G1 has
a Hamiltonian path if and only if G2 has a Hamiltonian circuit.

Note that HAMILTONIAN CIRCUIT (m ≤ n + k) can be solved in
time O(nk).

Theorem 2.4. HAMILTONIAN CIRCUIT (m ≥ (1 − ε)
(n
2

)
) is NP–

complete.
Proof. We transform HAMILTONIAN PATH to HAMILTONIAN CIR-
CUIT (m ≥ (1 − ε)

(n
2

)
). Let G1 = (V1, E1) be a graph making up an

arbitrary instance of HAMILTONIAN PATH. We now construct a graph
G2 = (V2, E2) by adding a complete graph Kp on p ≥ 3 vertices
v1, v2, . . . , vp and joining v1 and v2 to all vertices of G1, where p = n2−n1

and n2 = d2n1
ε e. Thus n2 = n1 + p and G2 has

m2 =

(
n2 − n1

2

)
+ 2n1 + m1 =

(
n2

2

)
− n1(n2 − 5

2
) +

n2
1

2
+ m1

>

(
n2

2

)
− n1(n2 − 1) ≥

(
n2

2

)
− ε

2
n2(n2 − 1) = (1− ε)

(
n2

2

)

edges. For each fixed ε > 0 the graph G2 has size O(n2
2) which is bounded

above by a polynomial function of n1.
If G2 has a Hamiltonian circuit then G1 has a Hamiltonian path

since G[G2 − {v1, v2}] consists of two components G[{v3, v4, . . . , vp}] and
G1. If G1 has a Hamiltonian path, say u1u2 . . . un1 , then u1u2 . . . un1v1v3

v4 . . . vpv2u1 is a Hamiltonian circuit in G2. Thus G1 has a Hamiltonian
path if and only if G2 has a Hamiltonian circuit.
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Theorem 2.5 HAMILTONIAN PATH (m ≤ n + cnα) is NP–complete.

Proof. We transform HAMILTONIAN PATH to HAMILTONIAN PATH
(m ≤ n + cnα). Let G1 = (V1, E1) be a graph making up an arbitrary in-
stance of HAMILTONIAN PATH. We now construct a graph G2 = (V2, E2)
by adding p ≥ max{1, dn2/α

1 c−1/αe − n1} vertices v1, v2, . . . , vp inducing
the path v1v2 . . . vp and joining v1 to all vertices of G1. Thus n2 = n1 +p
and G2 has m2 = m1 + p− 1 + n1 = m1 + n2− 1 ≤ n2− 1 +

(n1

2

)
< n2 + n2

1

edges. As in the proof of theorem 2.3 we obtain m2 ≤ n2 + cnα
2 and

m2 = O(n4/α
1 ) for each fixed pair α, c > 0.

If G2 has a Hamiltonian path P then P contains the path vp . . . v1u
for a vertex u ∈ V1. Hence P contains also a path in G1 starting at u and
containing all vertices of V1. Thus G1 has a Hamiltonian path. Conversely,
if G1 has a Hamiltonian path, say u1u2 . . . un1 , then u1u2 . . . un1v1v2 . . . vp

is a Hamiltonian path in G2. Thus G1 has a Hamiltonian path if and only
if G2 has a Hamiltonian path.

Note that HAMILTONIAN PATH (m ≤ n + k) can be solved in time
O(nk).

Theorem 2.6. HAMILTONIAN PATH (m ≥ (1− ε)
(n
2

)
) is NP–complete.

Proof. We transform HAMILTONIAN PATH to HAMILTONIAN PATH
(m ≥ (1 − ε)

(n
2

)
) and proceed as in the proof of theorem 2.4. This time,

only one vertex (v1) of the complete graph Kp is joined to all vertices of
G1. Thus n2 = n1 + p and G2 has

(n2−n1

2

)
+ n1 + m1 edges.

If G2 has a Hamiltonian path then G1 has a Hamiltonian path, too,
since G[G2 − v1] consists of two components G[{v2, v3, . . . , vp}] and G1. If
G1 has a Hamiltonian path, say u1u2 . . . un1 , then u1u2 . . . un1v1v2 . . . vp is
a Hamiltonian path in G2. Thus G1 has a Hamiltonian path if and only if
G2 has a Hamiltonian path.

Everything else mentioned in the proof of theorem 2.4. remains valid.
Thus the proof is complete.

3. Sufficient Conditions for Hamiltonian Circuits

There are quite a lot of sufficient conditions for a graph to have a Hamil-
tonian circuit. The following result is due to Bondy [1] and generalizes the
well-known theorems of Dirac (k = 0, [4]) and Ore (k = 1, [8]).
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Theorem 3.1. Let G be a k-connected graph of order n ≥ 3. If σk+1 ≥
1
2((k + 1)(n− 1) + 1) then G has a Hamiltonian circuit.

A major improvement for the case k = 2 has been established in [5] by
Flandrin, Jung and Li.

Theorem 3.2. Let G be a 2-connected graph of order n such that
d(u) + d(v) + d(w) ≥ n + |N(u) ∩N(v) ∩N(w)|

for any independent set {u, v, w} of vertices. Then G has a Hamiltonian
circuit.

Note that the conditions required in theorem 3.1. and 3.2. can be checked
in polynomial time of O(nk+1) and O(n3), respectively.

The best known sufficient condition using neighborhood unions of two
independent vertices is due to Broersma, van den Heuvel and Veldman [3].

Theorem 3.3. Let G be a graph of order n and NC2 ≥ 1
2n. Then either

G has a Hamiltonian circuit, or G is the Petersen graph, or G belongs to
one of three families of exceptional graphs.

Remark. It can be decided in polynomial time whether a given graph G
is isomorphic to the Petersen graph (a graph on ten vertices) or belongs to
one of the three families of exceptional graphs.

As in the previous section we now restrict HAMILTONIAN CIRCUIT to
graphs with σk+1 ≥ (1

2−ε)(k+1)n, d(u)+d(v)+d(w) ≥ (1−ε)n+ |N(u)∩
N(v) ∩ N(w)| for any three independent vertices or NC2 ≥ (1

2 − ε)n, re-
spectively. The corresponding problems will be HAMILTONIAN CIRCUIT
(σk+1 ≥ (1

2 − ε)(k +1)n), HAMILTONIAN CIRCUIT (d(u)+ d(v)+ d(w) ≥
n+ |N(u)∩N(v)∩N(w)|) or HAMILTONIAN CIRCUIT (NC2 ≥ (1

2−ε)n),
respectively.

Theorem 3.4. HAMILTONIAN CIRCUIT (σk+1 ≥ (1
2 − ε)(k + 1)n) is

NP–complete.

Proof. We transform HAMILTONIAN PATH to HAMILTONIAN CIR-
CUIT (σk+1 ≥ (1

2 − ε)(k + 1)n). Let G1 = (V1, E1) be a graph making up
an arbitrary instance of HAMILTONIAN PATH. We now construct a graph
G2 = (V2, E2) by adding a complete graph Kp on p vertices v1, v2, . . . , vp

and p − 1 vertices vp+1, vp+2, . . . , v2p−1, where p = d(1
2 − ε)n2e and

n2 = dn1
2ε e. Then n2 = n1 + 2p − 1. Let E2 = E1 ∪ {vivj |1 ≤ i < j ≤ p}

∪ {vivj |1 ≤ i ≤ p, p + 1 ≤ j ≤ 2p − 1} ∪ {viv|v ∈ V1, 1 ≤ i ≤ p}.
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Then σk+1 ≥ (k + 1)p ≥ (1
2 − ε)(k + 1)n2 for 0 ≤ k + 1 ≤ p, since

σ1 ≥ (1
2 − ε)n2 and α(G2) = α(G1) + (p− 1) ≥ 1 + (p− 1) = p by the con-

struction. Thus there always exists an independent set I of size k +1, e.g.,
I = {vp+1, vp+2, . . . , vp+k} ∪ {v} for a vertex v ∈ V1. For each fixed ε > 0
we have m2 = O(n2

2) which is bounded above by a polynomial function of
n1.

If G2 has a Hamiltonian circuit then G1 has a Hamiltonian path since
G[G2−{v1, v2, . . . , vp}] consists of p components {vp+1}, {vp+2}, . . . , {v2p−1}
and G1. If G1 has a Hamiltonian path, say u1u2 . . . un1 , then u1u2 . . . un1v1

vp+1v2vp+2 . . . v2p−1vpu1 is a Hamiltonian circuit in G2. Thus G1 has
a Hamiltonian path if and only if G2 has a Hamiltonian circuit.

Remark. For n1 = 2 let G1 consist of two isolated vertices {u, v}. Then
the graph G2 shows that the required conditions in theorems 3.1, 3.2 and
3.3 are sharp, since G[G2 − {v1, v2, . . . , vp}] consists of p + 1 components
{vp+1}, {vp+2}, . . . , {v2p−1}, {u} and {v}. Thus G2 has no Hamiltonian
circuit.

Theorem 3.5. HAMILTONIAN CIRCUIT (d(u) + d(v) + d(w)≥ (1−ε)n
+ |N(u) ∩N(v) ∩N(w)|) is NP–complete.

Proof. We follow the proof of theorem 3.4 and let ε1 = ε
2 , p = d(1

2−ε1)n2e.
Set S = {v1, v2, . . . , vp}, T = V2 − S. If I = {u, v, w} is an independent
set of three vertices, then I ⊆ T by the construction of G2. For a set
X ⊆ V (G) and a vertex v ∈ V (G) let NX(v) := N(v) ∩X. By dX(v) we
denote the degree of v in X. Then

d(u) + d(v) + d(w) = dS(u) + dS(v) + dS(w) + dT (u) + dT (v) + dT (w)
≥ 3p + |NT (u) ∩NT (v) ∩NT (w)|
≥ 2(

1
2
− ε1)n2 + |NS(u) ∩NS(v) ∩NS(w)|

+|NT (u) ∩NT (v) ∩NT (w)|
= (1− ε)n2 + |N(u) ∩N(v) ∩N(w)|.

Theorem 3.6. HAMILTONIAN CIRCUIT (NC2 ≥ (1
2 − ε)n) is NP–com-

plete.

Proof. We follow the proof of theorem 3.4. With α(G2) ≥ p + 1 ≥ 2 and
σ1(G2) ≥ (1

2 − ε)n2 we have NC2(G2) ≥ (1
2 − ε)n2.
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[7] J. Kratochv́ıl, P. Savický and Z. Tuza, One more occurrence of variables
makes satisfiability jump from trivial to NP–complete, SIAM J. Comput. 22
(1993) 203–210.

[8] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.

[9] I. Schiermeyer, The k–Satisfiability problem remains NP–complete for dense
families, Discrete Math. 125 (1994) 343–346.

Received 18 April 1994
Revised 2 September 1994

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

