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Abstract

In this paper we obtain the explicit formulas for chromatic polyno-
mials of cacti. From the results relating to cacti we deduce the analo-
gous formulas for the chromatic polynomials of n–gon–trees. Besides,
we characterize unicyclic graphs by their chromatic polynomials. We
also show that the so–called clique–forest–like graphs are chromati-
cally equivalent.
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1. Introduction

The graphs considered here are finite, undirected, simple and loopless. Let
V (G) be the vertex set of a graph G and E(G) be the edge set of G. Let
P (G, λ) denote the chromatic polynomial of the graph G. Two graphs are
said to be chromatically equivalent if their chromatic polynomials are equal.
A graph G is chromatically unique if P (G, λ) = P (H, λ) implies that H

is isomorphic to G. A class of graphs is chromatically characterized by
their chromatic polynomials if for each graph G from this class we have
P (G, λ) = P (H, λ) if and only if H belongs to this class.

A cactus is a connected graph where any two cycles (assumed as graphs
but not as sequences) have no edge in common. Chao and Whitehead [2]
proved that the cactus graphs with the same number of vertices, the same
number of edges and the same number of cycles of each length are chromat-
ically equivalent. Here, in part 2, we shall give the explicit formula for the
chromatic polynomial of these cacti.

Let n ≥ 3 be an integer. The graphs called n–gon–trees are defined
by recursion. The smallest n–gon–tree is the n–cycle, i.e. a cycle with n



20 Ewa  Lazuka

vertices. A n–gon–tree with k + 1 n–gons is obtained from a n–gon–tree
with k n–gons by adding a new n–gon which has exactly one edge in com-
mon with some n–gon of a n–gon–tree with k n–gons. In [1], Chao and Li
studied chromatic polynomials of these ”trees of polygons” and obtained the
chromatic characterization of n–gon–trees. Besides, Wakelin and Woodall
gave another proof of this characterization in [8]. None of these papers pro-
vided an explicit formula of the chromatic polynomial of graphs mentioned
above. In part 2, using the preceding results of this paper, we shall find the
chromatic polynomial of n–gon–trees.

In part 3 we shall give the chromatic characterization of unicyclic graphs,
i.e. connected graphs which contain exactly one cycle.

In part 4 we prove that graphs of a large class of nonisomorphic con-
nected planar graphs, the so–called clique–forest–like graphs, are chromati-
cally equivalent. This class includes forest–like graphs defined by Chao and
Whitehead in [2]. In part 4 we generalize their result.

In this paper we make use of some results of graphs and chromatic poly-
nomials due to Harary [5], Read [6] and Whitney [9].

2. Chromaticity of cacti and n–gon–trees

In this part the cycle with two vertices is meant as the complete graph of
order two (no multiple edges are allowed).

We shall denote by O(n1, . . . , nm) a cactus with m cycles with
ni vertices for i = 1, 2, . . . ,m, respectively, We assume for the cactus
O(n1, . . . , nm) that ni ≥ 2, for i = 1, 2, . . . ,m.

We shall use the following notations in the next part of this paper:

Im0 = {∅},

Imk = { {i1, i2, . . . , ik} : i1 < i2 < . . . < ik; i1, i2, . . . , ik ∈ {1, 2, . . . ,m} },

S(A) =
∑

i∈A

ni, for A ∈ Imk .

Thus, S(∅) = 0 and S(Im1 ) =
∑m

i=1 ni.

Although the proof of the below theorem is very long, we shall present it in
full because Theorem 1 will be used to derive further corollaries.
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Theorem 1. A cactus O(n1, . . . , nm), where m ≥ 1 and ni ≥ 2 for

i = 1, 2, . . . ,m, has the following chromatic polynomial

P (O(n1, . . . , nm), λ)=
1

λm−1







m
∑

k=0

∑

A∈Im
k

(−1)S(A) ·(λ−1)S(I
m

1
)−S(A)+k







.(1)

Proof. We use induction on m, i.e. on the number of the cycles of the
cactus O(n1, . . . , nm).
1. Let m = 1. According to [6, Theorem 6], we can write as follows

P (O(n1), λ) =P (Cn1
, λ) = (−1)n1(λ− 1) + (λ− 1)n1 =

1

λ0
[ (λ− 1)n1 + (−1)n1(λ− 1)1 ] =

1

λ0











1
∑

k=0

∑

A∈I1
k

(−1)S(A) · (λ− 1)S(I
1
1
)−S(A)+k











,

so for m = 1 Formula (1) is true.
2. Assume that Formula (1) holds for m = t; we will prove it for m = t+1.
By [6, Theorem 3], the chromatic polynomial of the cactus O(n1, . . . , nt+1),
which came into being from the cactus O(n1, . . . , nt) by adding a new cycle
Cnt+1

with nt+1 vertices, is of the following form

P (O(n1, . . . , nt+1), λ) =
1

λ
P (O(n1, . . . , nt), λ) · P (Cnt+1

, λ).

Now, using the chromatic characterization of cycle [6] and by the induction
hypothesis we obtain

P (O(n1, . . . , nt+1), λ) =

1

λt











t
∑

k=0

∑

A∈It
k

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+k











{(−1)nt+1(λ−1)+(λ−1)nt+1} =

1

λt







∑

A∈It
0

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+

∑

A∈It
1

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+1 +

. . . . . . . . .

∑

A∈It
k

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+k + · · ·+

∑

A∈It
t

(−1)S(A)(λ−1)S(I
t

1
)−S(A)+t







×



22 Ewa  Lazuka

{(−1)nt+1(λ− 1) + (λ− 1)nt+1} =

1

λt







∑

A∈It
0

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+1 +

∑

A∈It
1

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+2 + · · ·+

∑

A∈It
k

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+k+1 + · · ·+

∑

A∈It
t

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+t+1 +

∑

A∈It
0

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1 +

∑

A∈It
1

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+1 + · · ·+

∑

A∈It
k

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+k + · · ·+

∑

A∈It
t

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+t







=

(now, we shall write out some additional components and transpose some

components in the sum above for the clarity of the proof)

1

λt







∑

A∈It
0

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1 +





∑

A∈It
0

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+1 +

∑

A∈It
1

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+1



+





∑

A∈It
1

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+2 +

∑

A∈It
2

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+2



+ · · ·+
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





∑

A∈It
k−1

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+k +

∑

A∈It
k

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+k






+







∑

A∈It
k

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+k+1 +

∑

A∈It
k+1

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+k+1






+ · · ·+







∑

A∈It
t−1

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+t +

∑

A∈It
t

(−1)S(A)(λ− 1)S(I
t

1
)−S(A)+nt+1+t



+

∑

A∈It
t

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+t+1







=

(now, we shall reduce the sums in the square brackets)

1

λt











∑

A∈It+1

0

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A) +

∑

A∈It+1

1

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+1 +

∑

A∈It+1

2

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+2 + · · ·+

∑

A∈It+1

k

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+k +

∑

A∈It+1

k+1

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+k+1 + · · ·+
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∑

A∈It+1

t

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+t +

∑

A∈It+1

t+1

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+t+1











=

1

λt











t+1
∑

k=0

∑

A∈It+1

k

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+k











.

This proves Formula (1) for m = t+ 1.

The last component in the sum could be written in the above form because

∑

A∈It
t

(−1)S(A)+nt+1(λ− 1)S(I
t

1
)−S(A)+t+1 =

(−1)S(I
t

1
)+nt+1(λ− 1)t+1 = (−1)S(I

t+1

1
)(λ− 1)t+1 =

∑

A∈It+1

t+1

(−1)S(A)(λ− 1)S(I
t+1

1
)−S(A)+t+1.

Hence, Formula (1) holds for each integer m ≥ 1.

Corollary 1. A cactus Om
n with m n-cycles, m ≥ 1, n ≥ 2, has the

following chromatic polynomial

P (Om
n , λ) =

1

λm−1

m
∑

k=0

{(

m

k

)

(−1)kn(λ− 1)(m−k)n+k

}

,(2)

where
(

m

k

)

denotes the binomial coefficient.
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Proof. By Theorem 1 for ni = n where i = 1, 2, . . . ,m, we have

P (Om
n , λ) =

1

λm−1







m
∑

k=0

∑

A∈Im
k

(−1)S(A)(λ− 1)S(I
m

1
)−S(A)+k







=

1

λm−1







m
∑

k=0

∑

A∈Im
k

(−1)kn(λ− 1)(m−k)n+k







=

1

λm−1

m
∑

k=0

{

ak(−1)kn(λ− 1)(m−k)n+k
}

.

The coefficients ak are given by

a0 =
∑

A∈Im
0

1 = 1 and ak =
∑

A∈Im
k

1 , for k = 1, 2, . . . ,m.

It is easy to see that ak =
(

m

k

)

and a0 =
(

m

0

)

= 1.

For n = 2 Corollary 1 gives the chromatic polynomial of trees with
m+ 1 vertices.

Using Corollary 1 we can find at once the chromatic polynomial of an
n–gon–tree. Let m ≥ 1 and n ≥ 3 be integers. Let Cm

n denote n–gon–tree
with m n–gons.

Corollary 2. A n–gon–tree Cm
n has the chromatic polynomial of the follow-

ing form

P (Cm
n , λ) =

1

(λ− 1)m−1λm−1

m
∑

k=0

{(

m

k

)

(−1)kn(λ− 1)(m−k)n+k

}

.(3)

Proof. By well–known [6, Theorem 3] we have

P (Cm
n , λ) =

(P (Cn, λ))
m

(P (K2, λ))
m−1 ,

where Cn is a n–cycle and K2 is a complete graph with two vertices.
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Thus,

P (Cm
n , λ) =

(P (Cn, λ))
m

(λ− 1)m−1λm−1
=

1

(λ− 1)m−1

(P (Cn, λ))
m

λm−1
.

By comparison the forms of Om
n and Cm

n we can write

P (Cm
n , λ) =

1

(λ− 1)m−1
P (Om

n , λ).

Now, according to Formula (2), we obtain

P (Cm
n , λ) =

1

(λ− 1)m−1λm−1

m
∑

k=0

{ (

m

k

)

(−1)kn(λ− 1)(m−k)n+k

}

,

which proves the corollary.

The class of n–gon–trees is chromatically characterized [1,8]. The class of
cacti is not chromatically characterized as shown by Chao and Whitehead
in [2]. We find the characterization of the cacti with exactly one cycle, i.e.
the unicyclic graphs.

3. Chromaticity of unicyclic graphs

Eisenberg [4] gave the necessary condition for a graph to be an unicyclic
graph. We shall prove the necessity and sufficiency of this condition.

Theorem 2. A graph G with n ≥ 3 vertices is a unicyclic graph with

a p–cycle, 3 ≤ p ≤ n, if and only if

P (G, λ) = (λ− 1)n + (−1)p(λ− 1)n−p+1.(4)

Proof. Necessity. Let G be a unicyclic graph with n vertices whose
cycle has p vertices.
Without loss of generality we assume that G consists of the cycle and a tree
with exactly one vertex in common. Then the tree has n− p+ 1 vertices.

According to [6] we have P (Cn, λ) = (λ − 1)n + (−1)n(λ − 1) and
P (Tn, λ) = λ(λ − 1)n−1, where Cn denotes a n–cycle and Tn denotes a tree
with n vertices. Thus, see [6], G has the following chromatic polynomial

P (G, λ) =
P (Cp, λ)P (Tn−p+1, λ)

P (K1, λ)
=
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[(λ− 1)p + (−1)p(λ− 1)]λ(λ− 1)n−p

λ
= (λ− 1)n + (−1)p(λ− 1)n−p+1.

This chromatic polynomial can also be obtained from Theorem (1) for
m = n − p + 1, where one of the cycles has p vertices and the others have
two vertices. However, the above method of proof is far easier and quicker.

Sufficiency. Let G be a graph with n vertices whose chromatic polynomial
is equal to

P (G, λ) = (λ− 1)n + (−1)p(λ− 1)n−p+1.

This gives,

P (G, λ) =
n
∑

k=0

(

n

k

)

λn−k(−1)k + (−1)p
n−p+1
∑

k=0

(

n− p+ 1

k

)

λn−p+1−k(−1)k.

Let P (G, λ) = a0λ
n+a1λ

n−1+· · ·+an−1λ+an. The form of the chromatic
polynomial implies that for p ≤ 1 G would not have n vertices.

For p = 2 we have a1 =
(

n

1

)

(−1)1 + (−1)2
(

n−1
0

)

(−1)0 = −(n − 1)

and an−1 =
(

n

n−1

)

(−1)n−1+(−1)2
(

n−1
n−2

)

(−1)n−2 = (−1)n−1 6= 0, so G would
have to be a connected graph with n vertices and n − 1 edges, i. e., G

would have to be a tree.
For p = n + 1 we have P (G, λ) = (λ − 1)n + (−1)n+1. If n is even,

then P (G, 1) = −1 which is contrary to the definition of the chromatic
polynomial. If n is odd, then P (G, 1) = 1. Moreover, for p = n + 1 we

have a0 = 1 and an−1 =
(

n

n−1

)

(−1)n−1 + (−1)n+1 = (−1)n−1(n + 1) 6= 0.

According to the well-known properties of the chromatic polynomials [6],
G would have to be a connected graph with n vertices. Since n ≥ 3, G

could not be properly coloured with only one colour.
For p > n+ 1, P (G, λ) would not be the chromatic polynomial of any

graph.
Now, for p fulfilling the condition 3 ≤ p ≤ n, we have

a0 = 1,

a1 =

(

n

1

)

(−1)1 = −n,

an−1 =

(

n

n− 1

)

(−1)n−1 + (−1)p
(

n− p+ 1

n− p

)

(−1)n−p =

n(−1)n−1 + (n− p+ 1)(−1)n = (−1)n−1(p− 1) 6= 0 .
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Following [6], G is a connected graph with n vertices and n edges, so it must
contain exactly one cycle.

Now, let G be a unicyclic graph with n vertices containing a k–cycle,
where k 6= p. Then, according to ”Necessity”, we have P (G, λ) = (λ− 1)n+
(−1)k(λ − 1)n−k+1, which contradicts the above formula for P (G, λ) and
G must contain a p–cycle. This completes the proof of the theorem.

The above theorem implies the following conclusion.

Corollary 3. [3] A unicyclic graph G with a (n − 1)–cycle and n > 3
vertices is chromatically unique.

4. Chromatically equivalent graphs

A cycle is said to be a mini–cycle if no pair of its vertices is joined by a chord.
This definition is equivalent to the one given by Chao and Whitehead in [2].
Figure 1 gives examples of mini-cycles C ′ and C ′′ and a nonmini-cycle C

in the graph G.

Figure 1

Chao and Whitehead [2] defined a forest–like graph G as graph in which
every pair of cycles has at most one edge in common and its dual graph Gd

is a forest. Gd is obtained from G by replacing each mini–cycle by a
vertex, and by joining two vertices in Gd by one edge if and only if the
corresponding mini–cycles in G have one edge in common.

Now, we define a new class of graphs, the so–called clique–forest–like

graphs, as follows:
(i) Each forest–like graph is a clique–forest–like graph.



On chromaticity of graphs 29

(ii) If H is a clique–forest–like graph then G is a clique–forest–like graph
if and only if G can be obtained from H by adding a tree which
has one vertex in common with H, or by adding a cycle which has one
vertex or one edge in common with H.

It is easy to see that if G is a clique–forest–like graph, then its dual graph
Gd consists of cliques having at most one vertex in common (Figure 2 gives
an example). We shall say that Gd is a forest of clique–trees.

Figure 2

Theorem 3. All clique–forest–like graphs with n vertices, e edges and the

same number of mini–cycles of each length are chromatically equivalent.

In order to prove this theorem we need the following lemma, the proof
of which is a direct consequence of the construction of G.

Lemma 1. Let G be a clique–forest–like graph. Then G contains at

least one mini–cycle in which there exist edges belonging to none of other

mini–cycles.

Proof of Theorem 3. Let G and H be such graphs. We show that
they have the same chromatic polynomial, i.e., P (G, λ) = P (H, λ).

According to Lemma 1 we know that G contains a mini–cycle C in
which there exist edges belonging only to this cycle. We consider this clique–
tree in Gd which contains a vertex corresponding with the mini–cycle C in
G. Let i denote a number of vertices of the clique–tree mentioned above.
Now, we label all vertices in this clique–tree and their corresponding mini–
cycles in G by 1, 2, . . . , i traversing the clique–tree according to the depth
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first search [7]. But we can label a vertex v in Gd (and its corresponding
mini–cycles in G too) if and only if all vertices in each clique–subtree with
the root v have been already labelled. Then, we repeat this process to each
of the remaining clique–trees starting with the number i + 1 at the next
clique–tree. In this way all mini–cycles in G are labelled and none of them
have the same label.

Now, we shall use Whitney’s broken cycle theorem [9]. We break the
mini–cycles 1, 2, 3, . . . successively in the following way: If there exist edges
contained only in this cycle, we remove one of them. If the cycle j consists
only of the edges belonging also to other mini–cycles, we remove any edge
contained in the cycle with the label smaller than j, i.e. in the cycle which
has been already broken. We do not need to consider the nonmini–cycles
in G because in this process we break all nonmini–cycles by breaking all
mini–cycles.

Now, we apply the same process to H. The graphs G and H have the
same number of vertices, the same number of edges and the same number
of broken mini–cycles of each length. According to Whitney’s broken cycle
theorem we obtain P (G, λ) = P (H, λ), so G and H are chromatically
equivalent. That completes the proof of this theorem.
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