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Abstract

Let IL be the set of all hereditary and additive properties of graphs.
For P1,P2 ∈ IL, the reducible property R = P1 ◦ P2 is defined as
follows: G ∈ R if and only if there is a partition V (G) = V1 ∪ V2 of
the vertex set of G such that 〈V1〉G ∈ P1 and 〈V2〉G ∈ P2. The aim
of this paper is to investigate the structure of the reducible properties
of graphs with emphasis on the uniqueness of the decomposition of
a reducible property into irreducible ones.
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1. Introduction

We consider finite undirected graphs without loops and multiple edges. In
general, we follow the notation and terminology of [3]. For the sake of
brevity, we simply say that ”the graph G contains a subgraph H” instead
of ”the graph G contains a subgraph isomorphic to H”.

Let I be the set of all mutually non–isomorphic graphs. If P is
nonempty subset of I, then P also denotes the property that a graph
G is a member of P. A property P is said to be hereditary if G ∈ P
and H ⊆ G implies H ∈ P and additive if for each graph G all of
whose components have property P it follows G ∈ P, too (see [1], [2],
[8], [9]). The set IL of all hereditary and additive properties of graphs,
partially ordered by set inclusion forms a complete distributive lattice (see
[2], [4]). For any hereditary property P 6= I there is a number c(P) called
completeness of P such that Kc(P)+1 ∈ P but Kc(P)+2 /∈ P. A hereditary
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property P can be uniquely determined by the set of minimal forbidden
graphs which can be defined in the following way:

F (P) = {F ∈ I|F /∈ P but each proper subgraph of F belongs to P}.

Let P1,P2, . . . ,Pn be any properties of graphs. A vertex (P1,
P2, . . . ,Pn)−partition of G is a partition (V1, V2, . . . , Vn) of V (G) such
that for each i = 1, 2, . . . , n the induced subgraph 〈Vi〉G has the property
Pi. A property R = P1 ◦P2 ◦ . . .◦Pn is defined as a set of all graphs having
a vertex (P1,P2, . . . ,Pn)−partition.

A property P ∈ IL is said to be reducible if there exist P1,P2 ∈ IL such
that P = P1 ◦ P2, otherwise P is called irreducible (cf. [4], [6]).

A subset W of vertices of a graph G is called P−independent if and
only if the induced subgraph 〈W 〉G belongs to P. A subset W ⊆ V (G)
is said to be maximal P−independent if it is P−independent and there
exists no subset of vertices of G which is P−independent and properly
contains W . The maximum cardinality of P−independent set of a graph
G is denoted by αP(G).

We start with an easy observation.

Lemma 1. Let P,P1 and P2 be any hereditary properties of graphs. If
P1 = P2, then P ◦ P1 = P ◦ P2.

Proof. If G ∈ P◦P1, then there exists a (V1, V2)−partition of V (G) such
that 〈V1〉G ∈ P and 〈V2〉G ∈ P1. As P1 = P2, it implies that 〈V2〉G ∈ P2

and therefore G ∈ P ◦ P2.
The second inclusion can be proved analogously.

According to the previous lemma, one can ask whether it is possible to
simplify the equation P ◦ P1 = P ◦ P2 by cancellation of P. In what
follows we shall give a particular answer.

In the beginning we prove three useful lemmas.

Lemma 2. Let P1,P2 be hereditary properties of graphs. If P2 6⊆ P1, then
there exists a graph G ∈ P2 such that G ∈ F (P1).

Proof. We notice that P2 \ P1 is nonempty, because of P2 6⊆ P1. If G
belongs to P2 \ P1, then either G is a member of F (P1) or G possesses
H ∈ F (P1) as a subgraph. Since P2 is hereditary, it follows that H ∈ P2

and the proof is complete.
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Lemma 3. Let P,P1 and P2 be any hereditary properties of graphs. Then

(1) P ◦ (P1 ∩ P2) ⊆ P ◦ P1 ∩ P ◦ P2

(2) P ◦ (P1 ∪ P2) = P ◦ P1 ∪ P ◦ P2.

Proof. (1) Let G be an arbitrary graph belonging to P ◦ (P1∩P2). Then
the graph G must have a (V1, V2)−partition of V (G) such that 〈V1〉G ∈ P
and 〈V2〉G ∈ P1 ∩ P2. It means that 〈V2〉G ∈ P1 and 〈V2〉G ∈ P2. Thus,
G ∈ P ◦ P1 and simultaneously G ∈ P ◦ P2.

The proof of the statement (2) goes in a similar manner.

Lemma 4. Let l be a non-negative integer. If P is a hereditary property
of graphs with c(P) ≥ l, then for each graph G of order at least l + 1,
αP(G) ≥ l + 1 holds.

Proof. Let F be an arbitrary forbidden subgraph of P. As

c(P) = min {|V (F )| − 2|F ∈ F (P)},

we have l+2 ≤ c(P)+2 ≤ |V (F )|. It implies that each subgraph of G with
at most l + 1 vertices contains no F ∈ F (P). Therefore, αP(G) ≥ l + 1.

2. Cancellation by degenerate hereditary properties

If P is a hereditary property, then by χ(P) we understand the graph
theoretic invariant defined as follows:

χ(P) = min {χ(F )|F ∈ F (P)}.

A hereditary property P is called degenerate if and only if χ(P) = 2,
otherwise it is said to be non-degenerate (see e.g. [7]).

Now, we can prove our main results. We recall that we want to answer
the question whether it is possible to simplify the equation P ◦P1 = P ◦P2

by cancellation of P. The following theorem provides an affirmative answer
in the case when P has some bipartite graph forbidden.

Theorem 5. Let P be an additive degenerate hereditary property.
Let P1,P2 be any additive hereditary properties. If P ◦ P1 = P ◦ P2,
then P1 = P2.

Proof. We shall prove the assertion of theorem indirectly.
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Since P is degenerate, F (P) must contain a graph F ∈ F (P) with
χ(F ) = 2. It follows that there exists a (U1, U2)−partition of V (F ) such
that 〈U1〉F ∈ O and 〈U2〉F ∈ O, where O stands for the set of all
edgeless graphs. Moreover, as P is additive, F must be connected (for
details see [2]). Let us denote by q the integer max{|U1|, |U2|}. By an easy
observation we get that F is a subgraph of the complete bipartite graph
Kq,q. Without loss of generality, we can suppose P2 6⊆ P1. Then, according
to Lemma 2, it is possible to choose a graph G∗ ∈ P2 which does not
belong to P1. Further, consider the set

M = {V ⊆ V (G∗)|V is maximal P − independent}.

It is easy to see that M is not void. So, we can define the graphs H, G1 and
G as follows:

H =
⋃

V ∈M

q⋃

i=1

〈V 〉G∗ , G1 =
q⋃

i=1

G∗, G = H + G1.

As P and P2 are additive properties, it is easy to check that H ∈ P and
G1 ∈ P2. Then clearly G ∈ P ◦ P2. We claim that G /∈ P ◦ P1.

Suppose, to the contrary, G ∈ P ◦ P1. Then there exists a (W1,W2)–
partition of V (G) such that 〈W1〉G ∈ P and 〈W2〉G ∈ P1. Using the
notations V1 and V2 for the sets V (H) and V (G1) respectively, we
shall distinguish two cases.

Case 1. Assume |W1 ∩ V2| ≤ q − 1.
Then it is not difficult to see that G∗ is a subgraph of 〈W2〉G, contradicting
the fact 〈W2〉G ∈ P1.

Case 2. Assume |W1 ∩ V2| ≥ q.
Obviously, for an arbitrary fixed copy of G∗, W1 ∩ V (G∗) is
a P−independent subset of G∗. Thus, according to the definition of M ,
there exists a set V ∗ ∈ M such that W1 ∩ V (G∗) ⊆ V ∗. Provided that
there is a copy of 〈V ∗〉G ⊆ H with V ∗ ∩W1 = ∅ we obtain

G∗ ⊆ 〈V ∗〉G∗ + 〈W2 ∩ V (G∗)〉G∗ ⊆ 〈W2〉G,

which contradicts our assumption 〈W2〉G ∈ P1. Therefore, at least one
vertex of each copy of 〈V ∗〉G∗ ⊆ H must belong to W1.
Observe then, that Kq,q is a subgraph of the graph

G2 + 〈W1 ∩ V2〉G ⊆ 〈W1〉G,
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where G2 stands for the graph

G2 =
q⋃

i=1

〈V ∗ ∩W1〉G∗ .

But as stated above, F ⊆ Kq,q, which is a contradiction to our assumption
〈W1〉G ∈ P. So we are done in the second case.

Since G has no vertex (P,P1)−partition, P ◦ P1 6= P ◦ P2 holds.

3. Other results

The next theorem provides an entire solution of the cancellation problem
when the completeness of P is equal to one.

Theorem 6. Let P be an additive hereditary property of graphs, c(P) = 1.
Let P1,P2 be any hereditary properties and P1 6= P2. Then P◦P1 6= P◦P2.

Proof. Without loss of generality, we can suppose that P2 6⊆ P1. Then,
by Lemma 2, there exists a graph G∗ ∈ P2 which does not belong to P1.

Let l denote the P−independence number of G∗. Lemma 4 yields
that l = αP(G∗) ≥ 2. Let us define the set M in the following way:

M = {V ⊆ V (G∗)|V is maximal P − independent}.

Then it is easy to verify that the graph

H =
⋃

V ∈M

l⋃

i=1

〈V 〉G∗

has property P and the graph G = H + G∗ belongs to P ◦ P2. We shall
show that G /∈ P ◦ P1.

Suppose indirectly that G∈P ◦ P1. Then there exists some (P,P1)−
partition of the vertex set V (G). Let (W1,W2) be the vertex partition
mentioned above. Further, let V1 stands for the set V (H) and V2 denotes
the set V (G∗). The following cases may occur.

Case 1. |W1 ∩ V1| = 0.
This means that there is a set V ∗ ∈ M such that W1∩V2 ⊆ V ∗. Therefore,

G∗ ⊆ 〈V ∗〉H + 〈W2 ∩ V2〉G∗ ⊆ 〈W2〉G,

which is a contradiction.
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Case 2. |W1 ∩ V1| ≥ 1 and 〈W1 ∩ V1〉G is edgeless graph.
Then W1 ∩ V2 is empty or independent set (otherwise 〈W1〉G contains
a triangle, which contradicts the fact c(P) = 1). It implies that

|W1 ∩ V2| ≤ αO(G∗) ≤ αP(G∗) = l

(we recall that O denotes the set of all graphs without edges). On the
other hand, c(P) is equal to one, which implies that for each V ∈ M the
induced graph 〈V 〉G∗ ⊆ H contains at least one edge and that is why
|W2 ∩ V1| ≥ l. Thus

G∗ ⊆ 〈W2 ∩ V1〉G + 〈W2 ∩ V2〉G = 〈W2〉G
and we get again a contradiction.

Case 3. |W1 ∩ V1| ≥ 2 and 〈W1 ∩ V1〉G has an edge.
In this case, either W1 ∩ V2 is nonempty and 〈W1〉G∗ contains a triangle,
or G∗ ⊆ 〈W2〉G. In the former situation 〈W1〉G cannot have the property
P, and in the latter one, 〈W2〉G does not belong to P1.

Thus, we have G /∈ P ◦ P1.

It turns out that Theorem 5 can be extended to all hereditary properties
provided F (P) contains a tree which is not too large with respect to the
completeness of P.

Theorem 7. Let P be an additive hereditary property, T ∈ F (P) is
a tree, |V (T )| ≤ c(P) + 3. If P1,P2 are hereditary properties of graphs,
P1 6= P2, then P ◦ P1 6= P ◦ P2.

Proof. Since |V (T )| ≤ c(P) + 3 we have

∆(T ) ≤ |V (T )| − 1 ≤ c(P) + 2.

Without loss of generality, we can suppose P2 6⊆ P1, which implies that
there is a graph G∗ ∈ P2 \ P1. We define the graphs

H1 =
⋃

V ∈M

c(P)+2⋃

i=1

〈V 〉G∗ ,

H2 =
c(P)+2⋃

i=1

Kc(P)+1,
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H = H1 ∪H2 and G = H + G∗,

where M denotes the set of all maximal P−independent subsets of V (G∗).
We assert that G ∈ P ◦ P2 \ P ◦ P1.

Indeed, it is easy to check that G ∈ P ◦ P2. In order to obtain a con-
tradiction, assume G ∈ P ◦ P1. Then there exists a (W1,W2)−partition
of V (G) such that 〈W1〉G ∈ P and simultaneously 〈W2〉G ∈ P1. We
introduce the symbols V1 and V2 for the vertex sets V (H) and V (G∗)
respectively, in order to simplify notation.

Case 1. |W1 ∩ V2| = 0.
It follows that V2 ⊆ W2 and G∗ ⊆ 〈W2〉G. As G∗ ∈ P2 \ P1 we get a
contradiction.

Case 2. 0 < |W1 ∩ V2| ≤ c(P) + 1.
To avoid G∗ as a subgraph of 〈W2〉G, the inequality

|W2 ∩ V (Kc(P)+1)| < |W1 ∩ V2| ≤ c(P) + 1

must be satisfied for all copies of Kc(P)+1 ⊆ H. Hence,

|W1 ∩ V (Kc(P)+1)| ≥ c(P) + 1− |W1 ∩ V2|+ 1 = c(P)− |W1 ∩ V2|+ 2.

It makes each vertex u ∈ W1 ∩ V (Kc(P)+1) have a degree at least c(P) −
|W1 ∩ V2| + 1 + |W1 ∩ V2| = c(P) + 1. As at least one vertex of each copy
of Kc(P)+1 belongs to W1, any vertex w ∈ W1 ∩ V2 has a degree at least
c(P) + 1. Therefore, 〈W1〉G contains a subgraph with minimum degree at
least c(P) + 1. Then, by Lemma 3 of [5], an arbitrary tree on c(P) + 3
vertices (occasionally excluding a star on c(P)+3 vertices, but this case can
be solved by a small modification of this proof and therefore it is omitted)
is contained in 〈W1〉G, which contradicts the fact 〈W1〉G ∈ P.

Case 3. |W1 ∩ V2| ≥ c(P) + 2.
In similar manner as in the proof of Theorem 5, we obtain that ei-
ther G∗ ⊆ 〈W2〉G or 〈W1〉G possesses a complete bipartite graph
Kc(P)+2,c(P)+2. Since T is also bipartite and |V (T )| ≤ c(P) + 3, we
have T ⊆ Kc(P)+2,c(P)+2 ⊆ 〈W1〉G. In both cases G /∈ P ◦ P1.

Hence, G is a graph which belongs to P ◦ P2 but does not have the
property P ◦ P1, i.e. P ◦ P1 6= P ◦ P2.
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References

[1] V. E. Alekseev, Range of values of entropy of hereditary classes of graphs,
Diskretnaja matematika 4 (1992) 148–157 (Russian).
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