REDUCIBLE PROPERTIES OF GRAPHS

P. Mihók and G. Semanišin

Department of Geometry and Algebra, Faculty of Sciences, P. J. Šafárik's University Jesenná 5, 04154 Košice, Slovak Republic

Abstract

Let \mathbb{I} be the set of all hereditary and additive properties of graphs. For $\mathcal{P}_1, \mathcal{P}_2 \in \mathbb{I}$, the reducible property $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ is defined as follows: $G \in \mathcal{R}$ if and only if there is a partition $V(G) = V_1 \cup V_2$ of the vertex set of G such that $\langle V_1 \rangle_G \in \mathcal{P}_1$ and $\langle V_2 \rangle_G \in \mathcal{P}_2$. The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the decomposition of a reducible property into irreducible ones.

Keywords: hereditary property of graphs, additivity, reducibility **1991 Mathematics Subject Classification:** 05C15, 05C75

1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. In general, we follow the notation and terminology of [3]. For the sake of brevity, we simply say that "the graph G contains a subgraph H" instead of "the graph G contains a subgraph isomorphic to H".

Let \mathcal{I} be the set of all mutually non-isomorphic graphs. If \mathcal{P} is nonempty subset of \mathcal{I} , then \mathcal{P} also denotes the property that a graph G is a member of \mathcal{P} . A property \mathcal{P} is said to be *hereditary* if $G \in \mathcal{P}$ and $H \subseteq G$ implies $H \in \mathcal{P}$ and *additive* if for each graph G all of whose components have property \mathcal{P} it follows $G \in \mathcal{P}$, too (see [1], [2], [8], [9]). The set \mathbb{I} of all hereditary and additive properties of graphs, partially ordered by set inclusion forms a complete distributive lattice (see [2], [4]). For any hereditary property $\mathcal{P} \neq \mathcal{I}$ there is a number $c(\mathcal{P})$ called *completeness* of \mathcal{P} such that $K_{c(\mathcal{P})+1} \in \mathcal{P}$ but $K_{c(\mathcal{P})+2} \notin \mathcal{P}$. A hereditary

property \mathcal{P} can be uniquely determined by the set of *minimal forbidden* graphs which can be defined in the following way:

 $F(\mathcal{P}) = \{F \in \mathcal{I} | F \notin \mathcal{P} \text{ but each proper subgraph of } F \text{ belongs to } \mathcal{P}\}.$

Let $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ be any properties of graphs. A vertex $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n)$ -partition of G is a partition (V_1, V_2, \ldots, V_n) of V(G) such that for each $i = 1, 2, \ldots, n$ the induced subgraph $\langle V_i \rangle_G$ has the property \mathcal{P}_i . A property $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2 \circ \ldots \circ \mathcal{P}_n$ is defined as a set of all graphs having a vertex $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n)$ -partition.

A property $\mathcal{P} \in \mathbb{IL}$ is said to be *reducible* if there exist $\mathcal{P}_1, \mathcal{P}_2 \in \mathbb{IL}$ such that $\mathcal{P} = \mathcal{P}_1 \circ \mathcal{P}_2$, otherwise \mathcal{P} is called *irreducible* (cf. [4], [6]).

A subset W of vertices of a graph G is called \mathcal{P} -independent if and only if the induced subgraph $\langle W \rangle_G$ belongs to \mathcal{P} . A subset $W \subseteq V(G)$ is said to be maximal \mathcal{P} -independent if it is \mathcal{P} -independent and there exists no subset of vertices of G which is \mathcal{P} -independent and properly contains W. The maximum cardinality of \mathcal{P} -independent set of a graph G is denoted by $\alpha_{\mathcal{P}}(G)$.

We start with an easy observation.

Lemma 1. Let $\mathcal{P}, \mathcal{P}_1$ and \mathcal{P}_2 be any hereditary properties of graphs. If $\mathcal{P}_1 = \mathcal{P}_2$, then $\mathcal{P} \circ \mathcal{P}_1 = \mathcal{P} \circ \mathcal{P}_2$.

Proof. If $G \in \mathcal{P} \circ \mathcal{P}_1$, then there exists a (V_1, V_2) -partition of V(G) such that $\langle V_1 \rangle_G \in \mathcal{P}$ and $\langle V_2 \rangle_G \in \mathcal{P}_1$. As $\mathcal{P}_1 = \mathcal{P}_2$, it implies that $\langle V_2 \rangle_G \in \mathcal{P}_2$ and therefore $G \in \mathcal{P} \circ \mathcal{P}_2$.

The second inclusion can be proved analogously.

According to the previous lemma, one can ask whether it is possible to simplify the equation $\mathcal{P} \circ \mathcal{P}_1 = \mathcal{P} \circ \mathcal{P}_2$ by cancellation of \mathcal{P} . In what follows we shall give a particular answer.

In the beginning we prove three useful lemmas.

Lemma 2. Let $\mathcal{P}_1, \mathcal{P}_2$ be hereditary properties of graphs. If $\mathcal{P}_2 \not\subseteq \mathcal{P}_1$, then there exists a graph $G \in \mathcal{P}_2$ such that $G \in \mathbf{F}(\mathcal{P}_1)$.

Proof. We notice that $\mathcal{P}_2 \setminus \mathcal{P}_1$ is nonempty, because of $\mathcal{P}_2 \not\subseteq \mathcal{P}_1$. If G belongs to $\mathcal{P}_2 \setminus \mathcal{P}_1$, then either G is a member of $\mathbf{F}(\mathcal{P}_1)$ or G possesses $H \in \mathbf{F}(\mathcal{P}_1)$ as a subgraph. Since \mathcal{P}_2 is hereditary, it follows that $H \in \mathcal{P}_2$ and the proof is complete.

Lemma 3. Let $\mathcal{P}, \mathcal{P}_1$ and \mathcal{P}_2 be any hereditary properties of graphs. Then (1) $\mathcal{P} \circ (\mathcal{P}_1 \cap \mathcal{P}_2) \subseteq \mathcal{P} \circ \mathcal{P}_1 \cap \mathcal{P} \circ \mathcal{P}_2$

(2) $\mathcal{P} \circ (\mathcal{P}_1 \cup \mathcal{P}_2) = \mathcal{P} \circ \mathcal{P}_1 \cup \mathcal{P} \circ \mathcal{P}_2.$

Proof. (1) Let G be an arbitrary graph belonging to $\mathcal{P} \circ (\mathcal{P}_1 \cap \mathcal{P}_2)$. Then the graph G must have a (V_1, V_2) -partition of V(G) such that $\langle V_1 \rangle_G \in \mathcal{P}$ and $\langle V_2 \rangle_G \in \mathcal{P}_1 \cap \mathcal{P}_2$. It means that $\langle V_2 \rangle_G \in \mathcal{P}_1$ and $\langle V_2 \rangle_G \in \mathcal{P}_2$. Thus, $G \in \mathcal{P} \circ \mathcal{P}_1$ and simultaneously $G \in \mathcal{P} \circ \mathcal{P}_2$.

The proof of the statement (2) goes in a similar manner.

Lemma 4. Let l be a non-negative integer. If \mathcal{P} is a hereditary property of graphs with $c(\mathcal{P}) \geq l$, then for each graph G of order at least l+1, $\alpha_{\mathcal{P}}(G) \geq l+1$ holds.

Proof. Let F be an arbitrary forbidden subgraph of \mathcal{P} . As

$$c(\mathcal{P}) = \min\{|V(F)| - 2|F \in \mathbf{F}(\mathcal{P})\},\$$

we have $l+2 \leq c(\mathcal{P})+2 \leq |V(F)|$. It implies that each subgraph of G with at most l+1 vertices contains no $F \in \mathbf{F}(\mathcal{P})$. Therefore, $\alpha_{\mathcal{P}}(G) \geq l+1$.

2. CANCELLATION BY DEGENERATE HEREDITARY PROPERTIES

If \mathcal{P} is a hereditary property, then by $\chi(\mathcal{P})$ we understand the graph theoretic invariant defined as follows:

$$\chi(\mathcal{P}) = \min \left\{ \chi(F) | F \in \boldsymbol{F}(\mathcal{P}) \right\}.$$

A hereditary property \mathcal{P} is called *degenerate* if and only if $\chi(\mathcal{P}) = 2$, otherwise it is said to be *non-degenerate* (see e.g. [7]).

Now, we can prove our main results. We recall that we want to answer the question whether it is possible to simplify the equation $\mathcal{P} \circ \mathcal{P}_1 = \mathcal{P} \circ \mathcal{P}_2$ by cancellation of \mathcal{P} . The following theorem provides an affirmative answer in the case when \mathcal{P} has some bipartite graph forbidden.

Theorem 5. Let \mathcal{P} be an additive degenerate hereditary property. Let $\mathcal{P}_1, \mathcal{P}_2$ be any additive hereditary properties. If $\mathcal{P} \circ \mathcal{P}_1 = \mathcal{P} \circ \mathcal{P}_2$, then $\mathcal{P}_1 = \mathcal{P}_2$.

Proof. We shall prove the assertion of theorem indirectly.

Since \mathcal{P} is degenerate, $F(\mathcal{P})$ must contain a graph $F \in F(\mathcal{P})$ with $\chi(F) = 2$. It follows that there exists a (U_1, U_2) -partition of V(F) such that $\langle U_1 \rangle_F \in \mathcal{O}$ and $\langle U_2 \rangle_F \in \mathcal{O}$, where \mathcal{O} stands for the set of all edgeless graphs. Moreover, as \mathcal{P} is additive, F must be connected (for details see [2]). Let us denote by q the integer max{ $|U_1|, |U_2|$ }. By an easy observation we get that F is a subgraph of the complete bipartite graph $K_{q,q}$. Without loss of generality, we can suppose $\mathcal{P}_2 \not\subseteq \mathcal{P}_1$. Then, according to Lemma 2, it is possible to choose a graph $G^* \in \mathcal{P}_2$ which does not belong to \mathcal{P}_1 . Further, consider the set

 $M = \{ V \subseteq V(G^*) | V \text{ is maximal } \mathcal{P} - \text{independent} \}.$

It is easy to see that M is not void. So, we can define the graphs H, G_1 and G as follows:

$$H = \bigcup_{V \in M} \bigcup_{i=1}^{q} \langle V \rangle_{G^*}, G_1 = \bigcup_{i=1}^{q} G^*, G = H + G_1.$$

As \mathcal{P} and \mathcal{P}_2 are additive properties, it is easy to check that $H \in \mathcal{P}$ and $G_1 \in \mathcal{P}_2$. Then clearly $G \in \mathcal{P} \circ \mathcal{P}_2$. We claim that $G \notin \mathcal{P} \circ \mathcal{P}_1$.

Suppose, to the contrary, $G \in \mathcal{P} \circ \mathcal{P}_1$. Then there exists a (W_1, W_2) -partition of V(G) such that $\langle W_1 \rangle_G \in \mathcal{P}$ and $\langle W_2 \rangle_G \in \mathcal{P}_1$. Using the notations V_1 and V_2 for the sets V(H) and $V(G_1)$ respectively, we shall distinguish two cases.

Case 1. Assume $|W_1 \cap V_2| \le q - 1$.

Then it is not difficult to see that G^* is a subgraph of $\langle W_2 \rangle_G$, contradicting the fact $\langle W_2 \rangle_G \in \mathcal{P}_1$.

Case 2. Assume $|W_1 \cap V_2| \ge q$.

Obviously, for an arbitrary fixed copy of G^* , $W_1 \cap V(G^*)$ is a \mathcal{P} -independent subset of G^* . Thus, according to the definition of M, there exists a set $V^* \in M$ such that $W_1 \cap V(G^*) \subseteq V^*$. Provided that there is a copy of $\langle V^* \rangle_G \subseteq H$ with $V^* \cap W_1 = \emptyset$ we obtain

$$G^* \subseteq \langle V^* \rangle_{G^*} + \langle W_2 \cap V(G^*) \rangle_{G^*} \subseteq \langle W_2 \rangle_G,$$

which contradicts our assumption $\langle W_2 \rangle_G \in \mathcal{P}_1$. Therefore, at least one vertex of each copy of $\langle V^* \rangle_{G^*} \subseteq H$ must belong to W_1 . Observe then, that $K_{q,q}$ is a subgraph of the graph

$$G_2 + \langle W_1 \cap V_2 \rangle_G \subseteq \langle W_1 \rangle_G,$$

where G_2 stands for the graph

$$G_2 = \bigcup_{i=1}^q \langle V^* \cap W_1 \rangle_{G^*}.$$

But as stated above, $F \subseteq K_{q,q}$, which is a contradiction to our assumption $\langle W_1 \rangle_G \in \mathcal{P}$. So we are done in the second case.

Since G has no vertex $(\mathcal{P}, \mathcal{P}_1)$ -partition, $\mathcal{P} \circ \mathcal{P}_1 \neq \mathcal{P} \circ \mathcal{P}_2$ holds.

3. Other results

The next theorem provides an entire solution of the cancellation problem when the completeness of \mathcal{P} is equal to one.

Theorem 6. Let \mathcal{P} be an additive hereditary property of graphs, $c(\mathcal{P}) = 1$. Let $\mathcal{P}_1, \mathcal{P}_2$ be any hereditary properties and $\mathcal{P}_1 \neq \mathcal{P}_2$. Then $\mathcal{P} \circ \mathcal{P}_1 \neq \mathcal{P} \circ \mathcal{P}_2$.

Proof. Without loss of generality, we can suppose that $\mathcal{P}_2 \not\subseteq \mathcal{P}_1$. Then, by Lemma 2, there exists a graph $G^* \in \mathcal{P}_2$ which does not belong to \mathcal{P}_1 .

Let l denote the \mathcal{P} -independence number of G^* . Lemma 4 yields that $l = \alpha_{\mathcal{P}}(G^*) \geq 2$. Let us define the set M in the following way:

 $M = \{ V \subseteq V(G^*) | V \text{ is maximal } \mathcal{P} - \text{independent} \}.$

Then it is easy to verify that the graph

$$H = \bigcup_{V \in M} \bigcup_{i=1}^{l} \langle V \rangle_{G^*}$$

has property \mathcal{P} and the graph $G = H + G^*$ belongs to $\mathcal{P} \circ \mathcal{P}_2$. We shall show that $G \notin \mathcal{P} \circ \mathcal{P}_1$.

Suppose indirectly that $G \in \mathcal{P} \circ \mathcal{P}_1$. Then there exists some $(\mathcal{P}, \mathcal{P}_1)$ partition of the vertex set V(G). Let (W_1, W_2) be the vertex partition
mentioned above. Further, let V_1 stands for the set V(H) and V_2 denotes
the set $V(G^*)$. The following cases may occur.

Case 1. $|W_1 \cap V_1| = 0.$

This means that there is a set $V^* \in M$ such that $W_1 \cap V_2 \subseteq V^*$. Therefore,

$$G^* \subseteq \langle V^* \rangle_H + \langle W_2 \cap V_2 \rangle_{G^*} \subseteq \langle W_2 \rangle_G,$$

which is a contradiction.

Case 2. $|W_1 \cap V_1| \ge 1$ and $\langle W_1 \cap V_1 \rangle_G$ is edgeless graph. Then $W_1 \cap V_2$ is empty or independent set (otherwise $\langle W_1 \rangle_G$ contains a triangle, which contradicts the fact $c(\mathcal{P}) = 1$). It implies that

$$|W_1 \cap V_2| \le \alpha_O(G^*) \le \alpha_\mathcal{P}(G^*) = l$$

(we recall that \mathcal{O} denotes the set of all graphs without edges). On the other hand, $c(\mathcal{P})$ is equal to one, which implies that for each $V \in M$ the induced graph $\langle V \rangle_{G^*} \subseteq H$ contains at least one edge and that is why $|W_2 \cap V_1| \geq l$. Thus

$$G^* \subseteq \langle W_2 \cap V_1 \rangle_G + \langle W_2 \cap V_2 \rangle_G = \langle W_2 \rangle_G$$

and we get again a contradiction.

Case 3. $|W_1 \cap V_1| \ge 2$ and $\langle W_1 \cap V_1 \rangle_G$ has an edge.

In this case, either $W_1 \cap V_2$ is nonempty and $\langle W_1 \rangle_{G^*}$ contains a triangle, or $G^* \subseteq \langle W_2 \rangle_G$. In the former situation $\langle W_1 \rangle_G$ cannot have the property \mathcal{P} , and in the latter one, $\langle W_2 \rangle_G$ does not belong to \mathcal{P}_1 .

Thus, we have $G \notin \mathcal{P} \circ \mathcal{P}_1$.

It turns out that Theorem 5 can be extended to all hereditary properties provided $F(\mathcal{P})$ contains a tree which is not too large with respect to the completeness of \mathcal{P} .

Theorem 7. Let \mathcal{P} be an additive hereditary property, $T \in \mathbf{F}(\mathcal{P})$ is a tree, $|V(T)| \leq c(\mathcal{P}) + 3$. If $\mathcal{P}_1, \mathcal{P}_2$ are hereditary properties of graphs, $\mathcal{P}_1 \neq \mathcal{P}_2$, then $\mathcal{P} \circ \mathcal{P}_1 \neq \mathcal{P} \circ \mathcal{P}_2$.

Proof. Since $|V(T)| \le c(\mathcal{P}) + 3$ we have

$$\Delta(T) \le |V(T)| - 1 \le c(\mathcal{P}) + 2.$$

Without loss of generality, we can suppose $\mathcal{P}_2 \not\subseteq \mathcal{P}_1$, which implies that there is a graph $G^* \in \mathcal{P}_2 \setminus \mathcal{P}_1$. We define the graphs

$$H_1 = \bigcup_{V \in M} \bigcup_{i=1}^{c(\mathcal{P})+2} \langle V \rangle_{G^*},$$
$$H_2 = \bigcup_{i=1}^{c(\mathcal{P})+2} K_{c(\mathcal{P})+1},$$

REDUCIBLE PROPERTIES OF GRAPHS

$$H = H_1 \cup H_2$$
 and $G = H + G^*$,

where M denotes the set of all maximal \mathcal{P} -independent subsets of $V(G^*)$. We assert that $G \in \mathcal{P} \circ \mathcal{P}_2 \setminus \mathcal{P} \circ \mathcal{P}_1$.

Indeed, it is easy to check that $G \in \mathcal{P} \circ \mathcal{P}_2$. In order to obtain a contradiction, assume $G \in \mathcal{P} \circ \mathcal{P}_1$. Then there exists a (W_1, W_2) -partition of V(G) such that $\langle W_1 \rangle_G \in \mathcal{P}$ and simultaneously $\langle W_2 \rangle_G \in \mathcal{P}_1$. We introduce the symbols V_1 and V_2 for the vertex sets V(H) and $V(G^*)$ respectively, in order to simplify notation.

Case 1. $|W_1 \cap V_2| = 0$. It follows that $V_2 \subseteq W_2$ and $G^* \subseteq \langle W_2 \rangle_G$. As $G^* \in \mathcal{P}_2 \setminus \mathcal{P}_1$ we get a contradiction.

Case 2. $0 < |W_1 \cap V_2| \le c(\mathcal{P}) + 1$. To avoid G^* as a subgraph of $\langle W_2 \rangle_G$, the inequality

$$|W_2 \cap V(K_{c(\mathcal{P})+1})| < |W_1 \cap V_2| \le c(\mathcal{P}) + 1$$

must be satisfied for all copies of $K_{c(\mathcal{P})+1} \subseteq H$. Hence,

$$|W_1 \cap V(K_{c(\mathcal{P})+1})| \ge c(\mathcal{P}) + 1 - |W_1 \cap V_2| + 1 = c(\mathcal{P}) - |W_1 \cap V_2| + 2.$$

It makes each vertex $u \in W_1 \cap V(K_{c(\mathcal{P})+1})$ have a degree at least $c(\mathcal{P}) - |W_1 \cap V_2| + 1 + |W_1 \cap V_2| = c(\mathcal{P}) + 1$. As at least one vertex of each copy of $K_{c(\mathcal{P})+1}$ belongs to W_1 , any vertex $w \in W_1 \cap V_2$ has a degree at least $c(\mathcal{P}) + 1$. Therefore, $\langle W_1 \rangle_G$ contains a subgraph with minimum degree at least $c(\mathcal{P}) + 1$. Then, by Lemma 3 of [5], an arbitrary tree on $c(\mathcal{P}) + 3$ vertices (occasionally excluding a star on $c(\mathcal{P})+3$ vertices, but this case can be solved by a small modification of this proof and therefore it is omitted) is contained in $\langle W_1 \rangle_G$, which contradicts the fact $\langle W_1 \rangle_G \in \mathcal{P}$.

Case 3. $|W_1 \cap V_2| \ge c(\mathcal{P}) + 2.$

In similar manner as in the proof of Theorem 5, we obtain that either $G^* \subseteq \langle W_2 \rangle_G$ or $\langle W_1 \rangle_G$ possesses a complete bipartite graph $K_{c(\mathcal{P})+2,c(\mathcal{P})+2}$. Since T is also bipartite and $|V(T)| \leq c(\mathcal{P}) + 3$, we have $T \subseteq K_{c(\mathcal{P})+2,c(\mathcal{P})+2} \subseteq \langle W_1 \rangle_G$. In both cases $G \notin \mathcal{P} \circ \mathcal{P}_1$.

Hence, G is a graph which belongs to $\mathcal{P} \circ \mathcal{P}_2$ but does not have the property $\mathcal{P} \circ \mathcal{P}_1$, i.e. $\mathcal{P} \circ \mathcal{P}_1 \neq \mathcal{P} \circ \mathcal{P}_2$.

Acknowledgement

We would like to thank Roman Vasky for his stimulating ideas and first steps in proving our main result.

References

- V. E. Alekseev, Range of values of entropy of hereditary classes of graphs, Diskretnaja matematika 4 (1992) 148–157 (Russian).
- [2] M. Borowiecki, P. Mihók, *Hereditary properties of graphs* in: Advances in Graph Theory, Vishwa International Publication, India, (1991) 42–69.
- [3] G. Chartrand, L. Lesniak, Graphs and Digraphs (Wadsworth & Brooks/Cole, Monterey California 1986).
- [4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49–58.
- [5] P. Mihók, An extension of Brook's theorem, Annals of Discrete Math. 51 (1992) 235–236.
- [6] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, (to appear).
- [7] M. Simonovits, *Extremal graph theory*, in: L. W. Beineke and R. J. Wilson eds. Selected Topics in Graph Theory 2 (Academic Press, London, 1983) 161–200.
- [8] E. R. Scheinerman, On the structure of hereditary classes of graphs, Journal of Graph Theory 10 (1986) 545–551.
- [9] E. R. Scheinerman, J. Zito, On the size of hereditary classes of graphs, J. Combin. Theory (B) 61 (1994) 16–39.

Received 20 January 1994 Revised 15 November 1994