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Abstract

In this article we determine the crossing numbers of the Cartesian
products of given three graphs on five vertices with paths.
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Preliminaries

Let G be a simple graph with the vertex set V and the edge set E. A
drawing is a mapping of a graph into a surface. The vertices go into distinct
points, nodes. An edge and its incident vertices map into a homeomorphic
image of the closed interval [0,1] with the relevant nodes as endpoints and
the interior, an arc, containing no node. A good drawing is one in which
no two arcs incident to a common node have a common point; and no two
arcs have more than one point in common. A common point of two arcs
is a crossing. The crossing number ν(G) of a graph G is the minimum
number of crossings in any good drawing of G in the plane.

The Cartesian product G1 × G2 of graphs G1 and G2 has a vertex
set V (G1 ×G2) = V (G1)× V (G2) and edge set

E(G1 ×G2) = {{(ui, vj), (uh, vk)} : ui = uh and {vj , vk} ∈ E(G2)
or {ui, uh} ∈ E(G1) and vj = vk}.
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Let Cn be the cycle, Pn the path of length n and Sn the star K1,n.
The crossing numbers of the Cartesian products of all 4–vertex graphs with
cycles are determined in [1] and [2] and with paths and stars in [3] and [4].
In this paper we determine the precise values of the crossing numbers of
some products G× Pn where G is 5–vertex graph.

G2 G1 G3

Figure 1

Results

Three graphs of order five are shown in Figure 1. We assume n ≥ 1 and find
it convenient to consider the graph Gk × Pn, k ∈ {1, 2, 3}, in the following
way. It has 5(n + 1) vertices and edges that are the edges in the n + 1
copies Gi

k, i = 0, 1, ..., n, and five paths of length n. Furthermore, we call
the former edges red and the latter ones blue.

Let H i,j be a subgraph of Gk × Pn, k ∈ {1, 2, 3}, induced by the vertices
of Gi

k, G
i+1

k , ..., G
j
k for 0 ≤ i < j ≤ n. The subgraph H i,j −Gi

k is obtained
by the removal of all edges of Gi

k from the graph H i,j .

Lemma 1. If D is a good drawing of G1 × Pn, n ≥ 2, in which every

Gi
1, i = 0, 1, ..., n, has at most one crossing, then D has at least 2(n− 1)

crossings.

Proof. We show that in every drawing D0,i ofH0,i, i = 2, 3, ..., n, induced
by D there are at least two crossings more than the number of crossings
in the drawing D0,i−1 induced by D0,i.

Consider the drawing D0,i of H0,i induced by D. By the assumption
of Lemma 1 in the drawing D0,i−1 induced by D0,i there is no region with
5 vertices and at most one region with 4 vertices of Gi−1

1 on its boundary.
(The crossings are considered to be vertices of the map.) Suppose that in
D0,i−1 there is one region with four vertices of Gi−1

1 on its boundary. In
this case Gi−1

1 has one crossing with a blue edge joining Gi−2
1 to Gi−1

1
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and in D0,i all vertices of Gi
1 must lie outside this regoin. Therefore, in the

drawing D0,i there are at least two crossings between the edges of H0,i−1

and the edges of H i−1,i −Gi−1
1 . Otherwise, D0,i−1 induces the map with

at most three vertices of Gi−1
1 on the boundary of every region and the

edges of H i−1,i −Gi−1
1 have at least two crossings in D0,i.

Since i runs through 2, 3, ..., n, the drawing D has at least 2(n − 1)
crossings.

Figure 2

Theorem 1. ν(G1 × Pn) = 2(n− 1) for n ≥ 1.

Proof. The drawing in Figure 2 shows that ν(G1 × Pn) ≤ 2(n − 1) for
n ≥ 1. We prove the reverse inequality by induction on n. The case n = 1
is trivial.

Assume that the result is true for n = k, k ≥ 1, and suppose that there
is a good drawing of G1×Pk+1 with fewer than 2k crossings. By Lemma 1,
some of Gi

1 must then be crossed at least twice. By the removal of all edges
of this Gi

1 we obtain a graph, which is homeomorphic to G1×Pk or which
contains the subgraph G1×Pk, and has a drawing with fewer than 2(k−1)
crossings. This contradicts the induction hypothesis.

If we join all vertices of the graph G2 (Figure 1) with a vertex x different
from the vertices of G2, we obtain the graph which cannot be drawn without
having a G2-edge crossed because it contains a subgraph K3,3. If we join
all vertices of the graph G2 with vertices of a connected graph G, we again
obtain the graph which cannot be drawn without having a G2-edge crossed.
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Lemma 2. If D is a good drawing of G2 × Pn, n ≥ 1, in which every

Gi
2, i = 0, 1, ..., n, has at most two crossings, then D has at least 3n − 1

crossings.

Proof. By the assumption of Lemma 2 the red edges of two different Gi
2

and G
j
2 cannot cross. Otherwise, Gi

2 (Gj
2) has at least three crossings

(at least two crossings with the red edges of G
j
2 (Gi

2) and at least one
crossing with the blue edges joining Gi

2 to Gi−1
2 or Gi+1

2 (Gj
2 to G

j−1

2 or
G

j+1

2 )).
Consider the drawing Di,i+1 of H i,i+1, i ∈ {0, 1, ..., n − 2}, induced

by D.
Case 1. Let no edges of Gi+1

2 cross each other in Di,i+1. Then
the drawing Di+1 of Gi+1

2 induced by Di,i+1 induces the map with
two quadrangular regions and two triangular regions. By the assumption of
Lemma 2 in the drawing D all copies G0

2, G
1
2, ..., G

i
2, G

i+2
2 , ..., Gn

2 must lie
in the quadrangular region of Di+1. In Di,i+1 there is exactly one crossing
between the red edges of Gi+1

2 and the blue edges of H i,i+1 (Figure 3).

Figure 3 Figure 4

The drawing Di,i+1 divides the quadrangular region of Di+1 into new
regions with at most two vertices of Gi+1

2 on the boundary of every region.
(The crossings are again considered to be vertices of the map.) Consider
now the drawing Di,i+2 of H i,i+2, i ∈ {0, 1, ..., n− 2}, induced by D. In
the drawing Di,i+2 there are at least three crossings between the edges of
H i,i+1 and the edges of H i+1,i+2 −Gi+1

2 .
Case 2. Let in the drawing Di+1 of Gi+1

2 induced by Di,i+1 there
be a region with all vertices of Gi+1

2 on its boundary (Gi+1
2 has an internal

crossing). Then the drawing Di,i+1 divides this region of Di+1 into new
regions with at most two vertices (Figure 4(a)) or with at most three vertices
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(Figure 4(b)) on the boundary of every region. Consider now the drawing
Di,i+2 of H i,i+2, i ∈ {0, 1, ..., n− 2}, induced by D. In the drawing Di,i+2

there are at least three crossings between the edges of H i,i+1 and the edges
of H i+1,i+2 −Gi+1

2 .
Since H0,1 has at least two crossings and i runs through 0, 1, ..., n−2,

the drawing D has at least 3(n− 1) + 2 crossings.

Theorem 2. ν(G2 × Pn) = 3n− 1 for n ≥ 1.

Proof. The drawing in Figure 5 shows that ν(G2 × Pn) ≤ 3n − 1 for
n ≥ 1. The proof of the reverse inequality proceeds by induction on n in
the same way as in Theorem 1 using Lemma 2.

Figure 5

Theorem 3. ν(G3 × Pn) = 3n− 1 for n ≥ 1.

Proof. Into drawing of G2 × Pn in Figure 5 we can draw edges so that
we obtain a good drawing of G3 × Pn with at most 3n − 1 crossings.
As G2 × Pn is a subgraph of G3 × Pn and ν(G2 × Pn) = 3n − 1, then
ν(G3 × Pn) ≥ 3n− 1.
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