TWO SUFFICIENT CONDITIONS FOR COMPONENT FACTORS IN GRAPHS

SIZHONG ZHOU, QIUXIANG BIAN

School of Science
Jiangsu University of Science and Technology
Zhenjiang, Jiangsu 212100, China

e-mail: zsz_cumt@163.com
bianqiuxiang@just.edu.cn

AND

ZHIREN SUN

School of Mathematical Sciences
Nanjing Normal University
Nanjing, Jiangsu 210046, China

e-mail: 05119@njnu.edu.cn

Abstract

Let G be a graph. For a set \mathcal{H} of connected graphs, a spanning subgraph H of a graph G is called an \mathcal{H}-factor of G if each component of H is isomorphic to a member of \mathcal{H}. An \mathcal{H}-factor is also referred as a component factor. If $G - e$ admits an \mathcal{H}-factor for any $e \in E(G)$, then we say that G is an \mathcal{H}-factor deleted graph. Let $k \geq 2$ be an integer. In this article, we verify that (i) a graph G admits a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}$-factor if and only if its binding number $\text{bind}(G) \geq \frac{2}{2k+1}$; (ii) a graph G with $\delta(G) \geq 2$ is a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}$-factor deleted graph if its binding number $\text{bind}(G) \geq \frac{2}{2k-1}$.

Keywords: graph, minimum degree, binding number, \mathcal{H}-factor, \mathcal{H}-factor deleted graph.

2010 Mathematics Subject Classification: 05C70, 05C05.
1. Introduction

In this article, we discuss only finite simple graphs without loops or multiple edges. Given a graph G, we let $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. For a vertex x of a graph G, we use $N_G(x)$ to denote the set of vertices adjacent to x in G, and use $d_G(x)$ to denote the degree of x in G. We write $\delta(G) = \min\{d_G(x) : x \in V(G)\}$. For a vertex subset X of a graph G, we denote by $G[X]$ the subgraph of G induced by X, and write $G - X = G[V(G) \setminus X]$ and $N_G(X) = \bigcup_{x \in X} N_G(x)$. We denote by $I(G)$ the set of isolated vertices of G, and write $i(G) = |I(G)|$. The binding number $bind(G)$ of a graph G is the minimum, taken over all $X \subseteq V(G)$ with $X \neq \emptyset$ and $N_G(X) \neq V(G)$, of the ratio $|N_G(X)|/|X|$.

We denote by C_n, the cycle with n vertices, by K_n the complete graph with n vertices, and by $K_{n,m}$ the complete bipartite graph with partite sets X of size n and Y of size m, where $V(K_{n,m}) = X \cup Y$. For a tree T, we use $Leaf(T)$ to denote the set of leaves. An edge of T incident with a leaf is said to be a pendant edge.

We define a special class of trees $T(2k + 1)$, where $k \geq 2$ is an integer. Let R be a tree that satisfies the following conditions: for any $x \in V(R) - Leaf(R)$,

(a) $d_{R - Leaf(R)}(x) \in \{1, 3, \ldots, 2k + 1\}$

and

(b) $2 \cdot (\text{the number of leaves adjacent to } x \text{ in } R) + d_{R - Leaf(R)}(x) \leq 2k + 1$.

For such a tree R, we derive a new tree T_R as follows:

(c) insert a new vertex of degree 2 into each edge of $R - Leaf(R)$

and

(d) for every vertex x of $R - Leaf(R)$ with $d_{R - Leaf(R)}(x) = 2r + 1 < 2k + 1$, add $k - r - (\text{the number of leaves adjacent to } x \text{ in } R)$ pendant edges to x.

Then the set of such trees T_R for all trees R satisfying conditions (a) and (b) is denoted by $T(2k + 1)$.

For a set \mathcal{H} of connected graphs, a spanning subgraph H of a graph G is called an \mathcal{H}-factor of G if every component of H is isomorphic to a member of \mathcal{H}. An \mathcal{H}-factor is also referred as a component factor. If $G - e$ admits an \mathcal{H}-factor for any $e \in E(G)$, then we say that G is an \mathcal{H}-factor deleted graph.

Tutte [8] derived a characterization for a graph admitting a $\{K_2, C_n : n \geq 3\}$-factor. Amahashi and Kano [2] showed a necessary and sufficient condition for the existence of a $\{K_{1,j} : 1 \leq j \leq k\}$-factor in a graph. Kano, Lu and Yu [4] presented a sufficient condition for a graph to have a $\{K_{1,2}, K_{1,3}, K_5\}$-factor. Kano and Saito [6] obtained a result on the existence of a $\{K_{1,j} : k \leq j \leq 2k\}$-factor in a graph. Zhang, Yan and Kano [11] posed a sufficient condition for the existence of $\{K_{1,j}, K_{2k} : k \leq j \leq 2k - 1\}$-factors in graphs. Zhou [14] derived some results on the existence of component factors in graphs. For the relationships between
Two Sufficient Conditions for Component Factors in Graphs

binding number and graph factors, we refer the reader to [3, 7, 9, 10, 12, 13, 15–17].

Kano, Lu and Yu [5] gave a criterion for a graph having a \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factor, which is shown in the following.

Theorem 1 (Kano, Lu and Yu [5]). Let \(k \) be an integer with \(k \geq 2 \). Then a graph \(G \) admits a \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factor if and only if

\[
i(G - X) \leq \left(k + \frac{1}{2} \right) |X|
\]

for every \(X \subseteq V(G) \).

In this article, we establishes some relationships between binding numbers and \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factors in graphs.

Theorem 2. Let \(k \) be an integer with \(k \geq 2 \). Then a graph \(G \) admits a \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factor if and only if its binding number \(\bin(G) \geq \frac{2}{2k+1} \).

Theorem 3. Let \(k \) be an integer with \(k \geq 2 \). Then a graph \(G \) with \(\delta(G) \geq 2 \) is a \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factor deleted graph if its binding number \(\bin(G) \geq \frac{2}{2k+1} \).

Remark 4. For two graphs \(H_1 \) and \(H_2 \), \(H_1 \cup H_2 \) denotes the union of \(H_1 \) and \(H_2 \), and \(H_1 \vee H_2 \) denotes the join of \(H_1 \) and \(H_2 \). We show that the condition \(\bin(G) \geq \frac{2}{2k+1} \) in Theorem 3 cannot be replaced by \(\bin(G) \geq \frac{2}{2k} \). To explain this, we construct a graph \(G = H_1 \vee ((2kK_1) \cup (2H_2)) \), where \(H_1 = K_2, H_2 = K_2 \), and \(k \geq 2 \) is an integer. Choose \(Y = V(2kK_1) \). Obviously, \(Y \neq \emptyset \) and \(N_G(Y) \neq V(G) \). Furthermore, we easily see that \(\bin(G) = \frac{|N_G(Y)|}{|Y|} = \frac{2}{2k} \). Set \(e \in E(2H_2) \) and \(G' = G - e \). We choose \(X = V(H_1) \). Thus, we derive

\[
i(G' - X) = 2k + 2 > 2k + 1 = 2 \left(k + \frac{1}{2} \right) = \left(k + \frac{1}{2} \right) |X|.
\]

By Theorem 1, \(G' \) has no \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factor, and so, \(G \) is not a \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k+1)\}\)-factor deleted graph.

2. The Proof of Theorem 2

We first verify the following lemma, which is very useful in the proof of Theorem 2.

Lemma 5. Let \(G \) be a graph and \(\lambda \geq 1 \) be a real number. Then the following three statements are equivalent.

(i) \(i(G - S) \leq \lambda |S| \) for all \(S \subset V(G) \).
(ii) $\lambda|N_G(X)| \geq |X|$ for all independent set X of G.

(iii) $\lambda|N_G(Y)| \geq |Y|$ for all $Y \subset V(G)$.

Proof. The equivalence of (i) and (ii) of Lemma 5 is known and easy (See Lemma 7.1 [1]). In what follows, we prove only that (ii) implies (iii).

We may assume that G is connected. Let $\emptyset \neq Y \subset V(G)$, and let $X = Y \cap N_G(Y)$. Then $Y - X$ is an independent set of G, $N_G(X) \supseteq X$ and $N_G(Y - X) \cap Y = \emptyset$. Then by (ii) and $\lambda \geq 1$, we have

$$\lambda|N_G(Y)| \geq \lambda(|N_G(Y - X)| + |X|) \geq |Y - X| + |X| = |Y|.$$

Hence, (iii) holds. Lemma 5 is verified.

Proof of Theorem 2. Set $\lambda = \frac{2k+1}{2}$ in Lemma 5. According to Theorem 1, Lemma 5 and the definition of $\text{bind}(G)$, we see that

$$\text{bind}(G) \geq \frac{2}{2k + 1}$$

$$\Leftrightarrow \frac{2k + 1}{2}|N_G(Y)| \geq |Y| \text{ for all } Y \subset V(G)$$

$$\Leftrightarrow i(G - S) \leq \frac{2k + 1}{2}|S| \text{ for all } S \subset V(G)$$

$$\Leftrightarrow G \text{ admits a } \{K_{1,k}, K_{1,2}, \ldots, K_{1,k}, T(2k + 1)\}-\text{factor}.$$

We finish the proof of Theorem 2.

3. The Proof of Theorem 3

Proof of Theorem 3. Let $G' = G - e$ for any fixed $e = xy \in E(G)$ and $\mathcal{H} = \{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k + 1)\}$. To prove Theorem 3, it suffices to verify that G' admits an \mathcal{H}-factor. On the contrary, we assume that G' has no \mathcal{H}-factor. Then it follows from Theorem 1 that

$$i(G' - X) > (k + \frac{1}{2})|X|$$

for some vertex subset X of G.

We first demonstrate the following claim.

Claim 1. $|X| \geq 2$.

Proof. Since $\delta(G) \geq 2$, $\delta(G') \geq 1$ and so G' has no isolated vertex. Assume that $|X| = 1$. Then it follows from (1) and $k \geq 2$ that $i(G' - X) > (k + \frac{1}{2})|X| \geq \frac{5}{2}$, which implies

$$i(G' - X) \geq 3.$$

It is obvious that \(i(G' - X) = i(G - e - X) \leq i(G - X) + 2 \). Combining this with (2), we derive \(i(G - X) \geq i(G' - X) - 2 \geq 3 - 2 = 1 \), which implies that there exists at least one vertex \(u \) in \(G - X \) with \(d_{G - X}(u) = 0 \). Thus, we have \(d_G(u) \leq d_{G - X}(u) + |X| = 0 + 1 = 1 \), which contradicts \(\delta(G) \geq 2 \). Therefore, we obtain \(|X| \geq 2\). We finish the proof of Claim 1.

It follows from \(k \geq 2 \), \(\text{bind}(G) \geq \frac{2}{2k-1} \), Lemma 5 and Claim 1 that

\[
 i(G' - X) = i(G - e - X) \leq i(G - X) + 2 \leq \frac{2k - 1}{2} |X| + 2 \leq \frac{2k + 1}{2} |X|,
\]

which contradicts (1). Hence, \(G - e \) has an \(\mathcal{H} \)-factor by Theorem 1, which implies that \(G \) is an \(\mathcal{H} \)-factor deleted graph. This completes the proof of Theorem 3.

Finally, we present an open problem.

Problem. Find a criterion for a graph to be a \(\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, T(2k + 1)\} \)-factor deleted graph.

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for their very helpful comments and suggestions which resulted in a much improved paper. This work is supported by Six Big Talent Peak of Jiangsu Province (Grant No. JY–022). The corresponding author is Sizhong Zhou.

References

Received 9 October 2020
Revised 20 February 2021
Accepted 21 February 2021