REMOVABLE EDGES ON A HAMILTON CYCLE OR OUTSIDE A CYCLE IN A 4-CONNECTED GRAPH

JICHANG WUa, HAJO BROERSMAb, YAPING MAOc

AND

QIN MAd,2

aSchool of Mathematics
Shandong University, Jinan
Shandong 250100, China

bFaculty of EEMCS, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

cDepartment of Mathematics
Qinghai Normal University
Xining, Qinghai 810008, China

dDepartment of Biomedical Informatics
College of Medicine, Ohio State University
Columbus, OH, 43210, USA

e-mail: jichangwu@126.com
h.j.broersma@utwente.nl
maoyaping@ymail.com
qin.ma@osumc.edu

Abstract

Let \(G \) be a 4-connected graph. We call an edge \(e \) of \(G \) removable if the following sequence of operations results in a 4-connected graph: delete \(e \) from \(G \); if there are vertices with degree 3 in \(G - e \), then for each (of the at most two) such vertex \(x \), delete \(x \) from \(G - e \) and turn the three neighbors of \(x \) into a clique by adding any missing edges (avoiding multiple edges). In this paper, we continue the study on the distribution of removable edges in a 4-connected graph \(G \), in particular outside a cycle of \(G \) or in a spanning tree or on a Hamilton cycle of \(G \). We give examples to show that our results are in some sense best possible.

Keywords: 4-connected graph, removable edge, fragment, atom.

2010 Mathematics Subject Classification: 05C40, 05C38, 05C75.

1Research supported by China Scholarship Council (No. 201606225054).
2Corresponding author.
1. Introduction

References

Received 11 July 2018
Revised 23 December 2018
Accepted 9 February 2019