ON GRUNGY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS

Boštjan Brešar
Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e-mail: bostjan.bresar@um.si

Csilla Bujtás
Faculty of Information Technology, University of Pannonia, Veszprém, Hungary

e-mail: bujtas@dcs.uni-pannon.hu

Tanja Gologranc
Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e-mail: tanja.gologranc@gmail.com

Sandi Klavžar
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e-mail: sandi.klavzar@fmf.uni-lj.si

Gašper Košmrlj
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
Abelium R&D, Ljubljana, Slovenia

e-mail: gasperk@abelium.eu

Tilen Marc
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail: marct15@gmail.com
Abstract

A longest sequence \((v_1, \ldots, v_k)\) of vertices of a graph \(G\) is a Grundy total dominating sequence of \(G\) if for all \(i\), \(N(v_i) \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset\). The length \(k\) of the sequence is called the Grundy total domination number of \(G\) and denoted \(\gamma_{tgr}(G)\). In this paper, the Grundy total domination number is studied on four standard graph products. For the direct product we show that \(\gamma_{tgr}(G \times H) \geq \gamma_{tgr}(G)\gamma_{tgr}(H)\), conjecture that the equality always holds, and prove the conjecture in several special cases. For the lexicographic product we express \(\gamma_{tgr}(G \circ H)\) in terms of related invariant of the factors and find some explicit formulas for it. For the strong product, lower bounds on \(\gamma_{tgr}(G \boxtimes H)\) are proved as well as upper bounds for products of paths and cycles. For the Cartesian product we prove lower and upper bounds on the Grundy total domination number when factors are paths or cycles.

Keywords: total domination, Grundy total domination number, graph product.

2010 Mathematics Subject Classification: 05C69, 05C76.