THE EXISTENCE OF PATH-FACTOR COVERED GRAPHS

GUOWEI DAI

Faculty of Mathematics & Statistics
Central China Normal University
Laoyu Road 152, Wuhan, Hubei 430079, P.R. China

e-mail: daiguowei1990@163.com

Abstract

A spanning subgraph \(H \) of a graph \(G \) is called a \(P_{\geq k} \)-factor of \(G \) if every component of \(H \) is isomorphic to a path of order at least \(k \), where \(k \geq 2 \). A graph \(G \) is called a \(P_{\geq k} \)-factor covered graph if there is a \(P_{\geq k} \)-factor of \(G \) covering \(e \) for any \(e \in E(G) \). In this paper, we obtain two special classes of \(P_{\geq 2} \)-factor covered graphs. We also obtain two special classes of \(P_{\geq 3} \)-factor covered graphs. Furthermore, it is shown that these results are all sharp.

Keywords: path-factor, \(P_{\geq 2} \)-factor covered graph, \(P_{\geq 3} \)-factor covered graph, claw-free graph, isolated toughness.

2010 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction

We consider only finite simple graph, unless explicitly stated. We refer to [6] for the notation and terminologies not defined here. Let \(G = (V(G), E(G)) \) be a simple graph, where \(V(G) \) and \(E(G) \) denote the vertex set and the edge set of \(G \), respectively. A subgraph \(H \) of \(G \) is called a spanning subgraph of \(G \) if \(V(H) = V(G) \) and \(E(H) \subseteq E(G) \). A subgraph \(H \) of \(G \) is called an induced subgraph of \(G \) if every pair of vertices in \(H \) which are adjacent in \(G \) are also adjacent in \(H \). For \(v \in V(G) \), the degree of \(v \) in \(G \) is denoted by \(d_G(v) \). A graph \(G \) is said to be claw-free if there is no induced subgraph of \(G \) isomorphic to \(K_{1,3} \).

For a family of connected graphs \(\mathcal{F} \), a spanning subgraph \(H \) of a graph \(G \) is called an \(\mathcal{F} \)-factor of \(G \) if each component of \(H \) is isomorphic to some graph in \(\mathcal{F} \). A spanning subgraph \(H \) of a graph \(G \) is called a \(P_{\geq k} \)-factor of \(G \) if every component of \(H \) is isomorphic to a path of order at least \(k \). For example, a \(P_{\geq 3} \)-factor means a graph factor in which every component is a path of order at least
A graph G is called a $P_{\geq k}$-factor covered graph if there is a $P_{\geq k}$-factor of G covering e for any $e \in E(G)$.

Since Tutte proposed the well known Tutte 1-factor theorem [15], there are many results on graph factors [2, 3, 8, 9, 16] and $P_{\geq k}$-factors in claw-free graphs and cubic graphs [4, 12, 13]. More results on graph factors can be found in the survey papers and books in [2, 14, 18]. We use $\omega(G)$, $i(G)$ to denote the number of components and isolated vertices of a graph G, respectively. For a subset $X \subseteq V(G)$, $G - X$ denotes the graph obtained from G by deleting all the vertices of X. Akiyama, Avis and Era [1] proved the following theorem, which is a criterion for a graph to have a $P_{\geq 2}$-factor.

Theorem 1 (Akiyama et al. [2]). A graph G has a $P_{\geq 2}$-factor if and only if $i(G - X) \leq 2|X|$ for all $X \subseteq V(G)$.

Kaneko [10] introduced the concept of a sun and gave a characterization for a graph with a $P_{\geq 3}$-factor. It is perhaps the first characterization of graphs which have a path factor not including P_2. Recently, Kano et al. [11] presented a simpler proof for Kaneko’s theorem [10].

A graph H is called factor-critical if $H - \{v\}$ has a 1-factor for each $v \in V(H)$. Let H be a factor-critical graph and $V(H) = \{v_1, v_2, \ldots, v_n\}$. By adding new vertices $\{u_1, u_2, \ldots, u_n\}$ together with new edges $\{v_i u_i : 1 \leq i \leq n\}$ to H, the resulting graph is called a sun. Note that, according to Kaneko [10], we regard K_1 and K_2 also as a sun, respectively. Usually, the suns other than K_1 are called big suns. It is called a sun component of $G - X$ if the component of $G - X$ is isomorphic to a sun. We denote by $\text{sun}(G - X)$ the number of sun components in $G - X$.

Theorem 2 (Kaneko [10]). A graph G has a $P_{\geq 3}$-factor if and only if $\text{sun}(G - X) \leq 2|X|$ for all $X \subseteq V(G)$.

Zhang and Zhou [19] proposed the concept of path-factor covered graph, which is a generalization of matching cover. They also obtained a characterization for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor covered graphs, respectively.

Theorem 3 (Zhang et al. [19]). Let G be a connected graph. Then G is a $P_{\geq 2}$-factor covered graph if and only if $i(G - S) \leq 2|S| - \varepsilon(S)$ for all $S \subseteq V(G)$, where $\varepsilon(S)$ is defined by

$$
\varepsilon(S) = \begin{cases}
2 & \text{if } S \neq \emptyset \text{ and } S \text{ is not an independent set,} \\
1 & \text{if } S \neq \emptyset, S \text{ is an independent set and there exists a component of } G - S \text{ with at least two vertices,} \\
0 & \text{otherwise.}
\end{cases}
$$
The Existence of Path-Factor Covered Graphs

Theorem 4 (Zhang et al. [19]). Let G be a connected graph. Then G is a $P_{\geq 3}$-factor covered graph if and only if $\text{sun}(G - S) \leq 2|S| - \varepsilon(S)$ for all $S \subseteq V(G)$, where $\varepsilon(S)$ is defined by

$$\varepsilon(S) = \begin{cases}
2 & \text{if } S \neq \emptyset \text{ and } S \text{ is not an independent set,} \\
1 & \text{if } S \neq \emptyset, S \text{ is an independent set and there exists a} \\
& \text{non-sun component of } G - S, \\
0 & \text{otherwise.}
\end{cases}$$

For a connected graph G, its toughness, denoted by $t(G)$, was first introduced by Chvátal [7] as follows. If G is complete, then $t(G) = +\infty$; otherwise,

$$t(G) = \min \left\{ \frac{|S|}{\omega(G - S)} : S \subseteq V(G), \omega(G - S) \geq 2 \right\}.$$

Bazgan, Benhamdine, Li and Woźniak [5] showed a toughness condition for the existence of a $P_{\geq 3}$-factor in a graph.

Theorem 5 (Bazgan, Benhamdine, Li and Woźniak [5]). Let G be a graph with at least three vertices. If $t(G) \geq 1$, then G includes a $P_{\geq 3}$-factor.

For a connected graph G, its isolated toughness, denoted by $I(G)$, was first introduced by Yang, Ma and Liu [17] as follows. If G is complete, then $I(G) = +\infty$; otherwise,

$$I(G) = \min \left\{ \frac{|S|}{i(G - S)} : S \subseteq V(G), i(G - S) \geq 2 \right\}.$$

Theorem 6 (Zhou and Wu [20]). A graph G is a $P_{\geq 3}$-factor covered graph if one the following holds.

(i) G is a connected graph with at least three vertices and $t(G) > 2/3$;
(ii) G is a connected graph with at least three vertices and $I(G) > 5/3$;
(iii) G is a k-regular graph with $k \geq 2$.

In this paper, we proceed to investigate $P_{\geq k}$-factor covered graphs. We respectively obtain two special classes of $P_{\geq 2}$-factor covered graphs and $P_{\geq 3}$-factor covered graphs. Our main results will be shown in Sections 2 and 3, respectively.
2. \(P_{\geq 2} \)-Factor Covered Graphs

In this section, we mainly obtain two special classes of \(P_{\geq 2} \)-factor covered graphs. First, we will give a sufficient condition for a connected claw-free graph to be a \(P_{\geq 2} \)-factor covered graph as following. Note that the result in Theorem 7 is sharp in the sense that there exists a connected claw-free graph of minimum degree 1, which is not a \(P_{\geq 2} \)-factor covered graph. An example can be seen in Figure 1.

![Figure 1. A connected claw-free graph of minimum degree 1 that does not contain any \(P_{\geq 2} \)-factor covering.](image)

Theorem 7. Let \(G \) be a connected claw-free graph of minimum degree at least 2. Then \(G \) is a \(P_{\geq 2} \)-factor covered graph.

Proof. Suppose \(G \) is not a \(P_{\geq 2} \)-factor covered graph. Then by Theorem 3, there exists a subset \(S \subseteq V(G) \) such that \(i(G - S) > 2|S| - \varepsilon(S) \). In terms of the integrality of \(i(G - S) \), we obtain that \(i(G - S) \geq 2|S| - \varepsilon(S) + 1 \). We will distinguish two cases below to show that \(G \) is a \(P_{\geq 2} \)-factor covered graph.

Case 1. \(|S| \leq 1 \). If \(S = \emptyset \), then \(\varepsilon(S) = |S| = 0 \) by the definition of \(\varepsilon(S) \). It follows easily that

\[
i(G) = i(G - S) \geq 2|S| - \varepsilon(S) + 1 = 1.
\]

On the other hand, \(i(G) \leq \omega(G) = 1 \) since \(G \) is a connected graph. Combining the results above, we obtain \(i(G) = 1 \), which contradicts the connectivity of \(G \).

If \(|S| = 1 \), let \(S = \{s\} \). We obtain \(\varepsilon(S) \leq 1 \) by the definition of \(\varepsilon(S) \). If \(\varepsilon(S) = 0 \), then

\[
\omega(G - S) \geq i(G - S) \geq 2|S| - \varepsilon(S) + 1 = 3.
\]

Therefore, if either \(\varepsilon(S) \) is 0 or 1, then there are at least three components of \(G - \{s\} \). It follows easily that there exists a claw with center vertex \(s \) in \(G \), a contradiction.
Case 2. $|S| \geq 2$. Let $|S| = k \geq 2$ and $S = \{s_1, s_2, \ldots, s_k\}$. By the definition of $\varepsilon(S)$, we have $\varepsilon(S) \leq 2$. It follows easily that

$$i(G - S) \geq 2|S| - \varepsilon(S) + 1 = 2|S| - 1.$$

Let $i(G - S) = m \geq 2k - 1$ and $\{x_1, x_2, \ldots, x_m\}$ be the set of isolated vertices of $G - S$. Since the minimum degree of G is at least two, we immediately obtain the number of edges incident with the vertices in $\{x_1, x_2, \ldots, x_m\}$ is at least $2m$.

Because G does not have multiple edges and

$$\frac{2m}{|S|} = \frac{2m}{k} \geq \frac{2(2k - 1)}{k} = 4 - \frac{2}{k} \geq 3,$$

there must exist a vertex $s_i \in S$ adjacent to at least three vertices in $\{x_1, x_2, \ldots, x_m\}$ by pigeonhole principle. It follows easily that there exists a claw with center vertex s_i in G, a contradiction.

Combining Case 1 and Case 2, Theorem 7 is proved.

Next, we study the relationship between isolated toughness and $P_{\geq 2}$-factor covered graphs, and obtain an isolated toughness condition for the existence of $P_{\geq 2}$-factor covered graphs. The example in Figure 2 shows the sharpness of the results in Theorem 8 in the sense that there exists a connected graph with $I(G) = 2/3$, which is not a $P_{\geq 2}$-factor covered graph.

![Figure 2](image_url)

Figure 2. A connected graph with $I(G) = 2/3$ that does not contain any $P_{\geq 2}$-factor covering $e = x_1x_5$.

Theorem 8. Let G be a connected graph with at least two vertices. If $I(G) > 2/3$, then G is a $P_{\geq 2}$-factor covered graph.

Proof. If G is a complete graph with at least two vertices, obviously G is a $P_{\geq 2}$-factor covered graph. Thus we may assume that G is a connected graph with at least two vertices and not complete. Suppose G is not a $P_{\geq 2}$-factor covered graph. Then by Theorem 3, there exists a subset $S \subseteq V(G)$ such that...
$i(G - S) > 2|S| - \varepsilon(S)$. Then, by the integrality of $i(G - S)$, we obtain that $i(G - S) \geq 2|S| - \varepsilon(S) + 1$.

Case 1. $|S| \leq 1$. If $|S| = 0$, by the definition of $\varepsilon(S)$, we have $S = \emptyset$ and $\varepsilon(S) = 0$. It follows immediately that

$$i(G) = i(G - S) \geq 2|S| - \varepsilon(S) + 1 = 1,$$

which contradicts the connectivity of G.

Thus we may assume $|S| = 1$, we have $\varepsilon(S) \leq 1$ by the definition of $\varepsilon(S)$. It follows easily that

$$i(G - S) \geq 2|S| - \varepsilon(S) + 1 \geq 2|S|.$$

By the definition of $I(G)$, we have that

$$I(G) \leq \frac{|S|}{i(G - S)} \leq \frac{1}{2},$$

which contradicts $I(G) > 2/3$.

Case 2. $|S| \geq 2$. In this case, it follows from the definition of $\varepsilon(S)$ that $\varepsilon(S) \leq 2$, which implies that

$$i(G - S) \geq 2|S| - \varepsilon(S) + 1 \geq 2|S| - 1 \geq 3.$$

Thus we immediately obtain

$$|S| \leq \frac{i(G - S) + 1}{2}.$$

By the definition of $I(G)$, we have

$$I(G) \leq \frac{|S|}{i(G - S)} \leq \frac{i(G - S) + 1}{2} \leq \frac{1}{2} + \frac{1}{2i(G - S)} \leq \frac{1}{2} + \frac{1}{6} = \frac{2}{3},$$

which contradicts $I(G) > 2/3$.

This completes the proof of Theorem 8.

3. $P_{\geq 3}$-Factor Covered Graphs

In this section, we mainly obtain two special classes of $P_{\geq 3}$-factor covered graphs. First, we give a minimum degree condition for a connected claw-free graph to be a $P_{\geq 3}$-factor covered graph as following. Note that the results in Theorem 9 is also sharp in the sense that there exists a connected claw-free graph of minimum degree 2, which is not a $P_{\geq 3}$-factor covered graph. It is shown by the example in Figure 3.
The Existence of Path-Factor Covered Graphs

Theorem 9. Let G be a connected claw-free graph of minimum degree at least 3. Then G is a $P_{\geq 3}$-factor covered graph.

Proof. Suppose G is not a $P_{\geq 3}$-factor covered graph. Then by Theorem 4, there exists a subset $S \subseteq V(G)$ such that $\text{sun}(G - S) > 2|S| - \varepsilon(S)$. In terms of the integrality of $\text{sun}(G - S)$, we obtain that $\text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1$. We will distinguish two cases below to show that G is a $P_{\geq 3}$-factor covered graph.

Case 1. $|S| \leq 1$. If $S = \emptyset$, then $\varepsilon(S) = |S| = 0$ by the definition of $\varepsilon(S)$. It follows easily that

$$\text{sun}(G) = \text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1 = 1.$$

On the other hand, $\text{sun}(G) \leq \omega(G) = 1$ since G is a connected graph. Combining the results above, we obtain that G is a big sun, which contradicts the minimum degree of G.

If $|S| = 1$, let $S = \{s\}$. We obtain $\varepsilon(S) \leq 1$ by the definition of $\varepsilon(S)$. If $\varepsilon(S) = 0$, then

$$\omega(G - S) \geq \text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1 = 3.$$

Otherwise $\varepsilon(S) = 1$, then there exists a non-sun component of $G - S$ and thus

$$\omega(G - S) \geq \text{sun}(G - S) + 1 \geq 2|S| - \varepsilon(S) + 1 + 1 = 3.$$

Therefore, if either $\varepsilon(S)$ is 0 or 1, then there are at least three components of $G - \{s\}$. It follows easily that there exists a claw with center vertex s in G, a contradiction.

This completes the proof of Case 1.

Case 2. $|S| \geq 2$. Let $|S| = k \geq 2$ and $S = \{s_1, s_2, \ldots, s_k\}$. By the definition of $\varepsilon(S)$, we have $\varepsilon(S) \leq 2$. It follows easily that

$$\text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1 \geq 2|S| - 1.$$

Figure 3. A connected claw-free graph of minimum degree 2 that does not contain any $P_{\geq 3}$-factor covering $e = x_2x_3$.
Let \(\text{sun}(G - S) = m \geq 2k - 1 \) and \(\{C_1, C_2, \ldots, C_m\} \) be the set of sun components of \(G - S \). For any sun component \(C_i \) of \(G - S \), let \(L(C_i) \subseteq V(C_i) \) be the set of vertices with exactly one neighbour vertex in \(C_i \), and \(L(C_i) = V(C_i) \) if \(C_i \cong K_1 \), where \(1 \leq i \leq m \). Let \(E(S, V(C_i) \setminus L(C_i)) \) be the set of edges in graph \(G \) between vertex \(a \) and \(b \) for any \(a \in S, b \in V(C_i) \setminus L(C_i) \) for \(1 \leq i \leq m \). Then we construct a bipartite multigraph \(H \) from \(G \) by deleting all edges of \(E(G[S]) \cup \left(\bigcup_{i=1}^{m} E(S, V(C_i) \setminus L(C_i)) \right) \) and all vertices of \(V(G) \setminus S \cup \left(\bigcup_{i=1}^{m} V(C_i) \right) \) and contracting each \(C_i \) to a vertex \(c_i \) for \(1 \leq i \leq m \).

Claim 1. For any vertex \(u, v \in V(H) \), there are at most two edges between \(u \) and \(v \) in \(H \).

Proof. Without loss of generality, we assume \(u = s_1 \) and \(v = c_1 \). Suppose there are three edges between \(u \) and \(v \) in \(H \). Then there are three vertices in \(L(C_1) \) corresponding to the vertex \(c_1 \), denoted by \(\{c_1^1, c_1^2, c_1^3\} \). By the definition of big sun, \(c_1^i c_1^j \notin E(G) \) for any \(1 \leq i < j \leq 3 \), which implies a claw with center vertex \(u \) in \(G \). This is a contradiction. \(\Box \)

Since the minimum degree of \(G \) is at least three, it is clear that \(d_H(c_i) \geq 3 \) for \(1 \leq i \leq m \). Trivially,

\[
|E(H)| \geq 3m \geq 3(2k - 1) = 6k - 3.
\]

By pigeonhole principle and

\[
\frac{|E(H)|}{|S|} \geq \frac{3m}{k} \geq \frac{6k - 3}{k} = 6 - \frac{3}{k} > 4,
\]

there must exist a vertex \(s_i \in S \) incident with at least five edges in \(E(H) \). According to Claim 1 and pigeonhole principle, there exists at least three vertices, denoted by \(\{c_1, c_2, c_3\} \), adjacent to \(s_i \). Since \(\{s_i, c_1, c_2, c_3\} \) induces a claw in \(H \), it follows easily that there exists a claw with center vertex \(s_i \) in \(G \), a contradiction. This completes the proof of Case 2.

Combining Case 1 and Case 2, Theorem 9 is proved. \(\blacksquare \)

Next, we investigate the relationship between planar graphs and \(P_{\geq 3} \)-factor covered graphs, and obtain a connectivity condition for a planar graph to be a \(P_{\geq 3} \)-factor covered graphs as following. The example in Figure 4 shows the sharpness of the results in Theorem 11 in the sense that there exists a 2-connected planar graph, which is not a \(P_{\geq 3} \)-factor covered graph.
The Existence of Path-Factor Covered Graphs

Figure 4. A 2-connected planar graph that does not contain any $P_{\geq 3}$-factor covering $e = x_3x_4$.

Lemma 10 [6]. Let G be a connected planar graph with at least three vertices. If G does not contain triangles, then $|E(G)| \leq 2|G| - 4$.

Theorem 11. Let G be a 3-connected planar graph. Then G is a $P_{\geq 3}$-factor covered graph.

Proof. Suppose G is not a $P_{\geq 3}$-factor covered graph. By Theorem 4, there exists a subset $S \subseteq V(G)$ such that $\text{sun}(G - S) > 2|S| - \varepsilon(S)$. According to the integrality of $\text{sun}(G - S)$, we obtain that $\text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1$. We distinguish three cases below to show that G is a $P_{\geq 3}$-factor covered graph.

Case 1. $|S| = 0$. In this case, by the definition of $\varepsilon(S)$, we have $S = \emptyset$ and $\varepsilon(S) = 0$. Since G is a connected graph, $\text{sun}(G) \leq \omega(G) = 1$. On the other hand, we obtain that

$$\text{sun}(G) = \text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1 = 1.$$

It follows easily that $\text{sun}(G) = 1$, which is to say G is a big sun. By the definition of sun, it contradicts the fact that G is 3-connected. This completes the proof of Case 1.

Case 2. $|S| = 1$. In this case, we obtain $\varepsilon(S) \leq 1$ by the definition of $\varepsilon(S)$. It follows immediately that

$$\text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1 \geq 2.$$

Let $S = \{x\} \subseteq V(G)$. Since $\omega(G - S) \geq \text{sun}(G - S) \geq 2$, x is a cut-vertex of G, which contradicts the fact that G is 3-connected. This completes the proof of Case 2.

Case 3. $|S| \geq 2$. In this case, we obtain $\varepsilon(S) \leq 2$ by the definition of $\varepsilon(S)$. It follows immediately that

$$\text{sun}(G - S) \geq 2|S| - \varepsilon(S) + 1 \geq 2|S| - 1.$$
Set $|S| = s$. We denote by $\text{Sun}(G - S)$ the set of sun components in $G - S$. Since $\text{sun}(G - S) \geq 2|S| - 1$, let $C_1, C_2, \ldots, C_{2s-1}$ be $2s - 1$ distinct sun components where $C_i \in \text{Sun}(G - S)$ for any $1 \leq i \leq 2s - 1$. Then we construct a bipartite graph H from G by contracting each C_i to a vertex c_i for $1 \leq i \leq 2s - 1$ and deleting all edges of $E(G[S])$ and all vertices of
\[
V(G) \setminus (S \cup \bigcup_{i=1}^{2s-1} V(C_i)).
\]
Since G is 3-connected, it is clear that $d_H(c_i) \geq 3$ for $1 \leq i \leq 2s - 1$. Trivially,
\[
|H| = s + (2s - 1) = 3s - 1 \geq 5,
\]
and
\[
|E(H)| \geq 3 (2s - 1) = 6s - 3.
\]
As G is a 3-connected planar graph, it is easy to see that H is also a connected planar graph. According to the fact that a bipartite graph does not contain any odd cycles, Lemma 10 implies that
\[
6s - 3 \leq |E(H)| \leq 2|H| - 4 = 2(3s - 1) - 4 = 6s - 6,
\]
which is a contradiction. This completes the proof of Case 3.

Combining Cases 1-3, Theorem 11 is proved.

References

 doi:10.1002/jgt.3190090103
 doi:10.1016/0012-365X(82)90048-6
 doi:10.1016/S0012-365X(01)00214-X
 doi:10.1016/S0304-3975(00)00247-4

