ON M_f-EDGE COLORINGS OF GRAPHS

JAROSLAV IVANČO1 AND ALFRED ONDERKO

Institute of Mathematics, P.J. Šafárik University
Jesenná 5, 040 01 Košice, Slovakia

e-mail: jaroslav.ivanco@upjs.sk
alfred.onderko@student.upjs.sk

Abstract

An edge coloring φ of a graph G is called an M_f-edge coloring if $|\varphi(v)| \leq f(v)$ for every vertex v of G, where $\varphi(v)$ is the set of colors of edges incident with v and f is a function which assigns a positive integer $f(v)$ to each vertex v. Let $K_f(G)$ denote the maximum number of colors used in an M_f-edge coloring of G. In this paper we establish some bounds on $K_f(G)$, present some graphs achieving the bounds and determine exact values of $K_f(G)$ for some special classes of graphs.

Keywords: edge coloring, anti-Ramsey number, dominating set.

2010 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of G, respectively. The subgraph of a graph G induced by $U \subseteq V(G)$ is denoted by $G[U]$. Similarly, if $A \subseteq E(G)$, then $G[A]$ denotes the subgraph of G induced by A (i.e., the subgraph with the edge set A and the vertex set consisting of all vertices incident with an edge in A). The set of vertices of G adjacent to a vertex $v \in V(G)$ is denoted by $N_G(v)$. The cardinality of this set, denoted $\deg_G(v)$, is called the degree of v. As usual $\Delta(G)$ and $\delta(G)$ stand for the maximum and minimum degree among vertices of G. The set of vertices of degree d in G is denoted by $V_d(G)$.

1This work was supported by the Slovak VEGA Grant 1/0368/16 and by the Slovak Research and Development Agency under the contract No. APVV-15-0116.
An edge coloring of a graph G is an assignment of colors to the edges of G, one color to each edge. So any mapping φ from $E(G)$ onto a non-empty set is an edge coloring of G. The set of colors used in an edge coloring φ of G is denoted by $\varphi(G)$, i.e., $\varphi(G) = \{\varphi(e) : e \in E(G)\}$. For any vertex $v \in V(G)$, let $\varphi(v)$ denote the set of colors of edges incident with v, i.e., $\varphi(v) = \{\varphi(uv) : u \in N_G(v)\}$. Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$. An edge coloring φ of G is an M_f-edge coloring if at most $f(v)$ colors appear at any vertex v of G, i.e., $|\varphi(v)| \leq f(v)$ for every vertex $v \in V(G)$. The maximum number of colors used in an M_f-edge coloring of G is denoted by $K_f(G)$. If $f(v) = i$ for all $v \in V(G)$, then an M_f-edge coloring is called an M_i-edge coloring and the maximum number of colors used in an M_i-edge coloring is denoted by $K_i(G)$.

The M_f-edge coloring is a natural generalization of the M_i-edge coloring. The concept of M_i-edge colorings was introduced by Czap [4]. In [3] authors establish a tight bound on $K_2(G)$ depending on the size of a maximum matching in G. In [4] and [5], the exact values of $K_2(G)$ for subcubic graphs and complete graphs are determined. In [7] it is determined $K_2(G)$ for cacti, trees, graph joins and complete multipartite graphs. In [10] there are established some bounds on $K_2(G)$ and presented graphs achieving the bounds. Exact values of $K_2(G)$ for dense graphs are also determined. $K_3(G)$ and $K_4(G)$ for complete graphs are determined in [6]. A vertex variant of the M_2-edge coloring was studied in [2].

However before, Feng et al. [8] introduced a maximum edge q-coloring problem which arises from wireless mesh networks. It is really the problem of finding an M_q-edge coloring of a given graph G which uses $K_q(G)$ colors (for an integer q, $q \geq 2$). There are studied mainly algorithmic aspects of the maximum edge q-coloring problem. In [8] there is provided a 2-approximation algorithm for $q = 2$ and a $(1 + \frac{4q-2}{3q^2-6q+2})$-approximation for $q > 2$. In [1] there is proved that the maximum edge q-coloring problem is NP-Hard. Also, for graphs with perfect matching there is presented a $\frac{q}{3}$-approximation algorithm in case $q = 2$. A related problem is studied in [12].

The anti-Ramsey number has been extensively studied in the area of extremal graph theory (see [9] for a survey). For given graphs G and H the anti-Ramsey number $ar(G,H)$ is defined to be the maximum number k such that there exists an assignment of k colors to the edges of G in which every copy of H in G has at least two edges with the same color. A coloring of G is an M_q-edge coloring if and only if each subgraph $K_{1,q+1}$ (a star with $q+1$ edges) of G has two edges with the same color. Therefore $K_q(G)$ is equal to $ar(G,K_{1,q+1})$. Thereby, in [11] there is determined $K_q(K_{n,n})$ exactly and $K_q(K_n)$ within 1, for all positive integers n and q. Similarly, an upper bound on the value of $K_q(G)$ if $\delta(G) \geq q + 5$, or if G is K_3-free and $\delta(G) \geq q + 2$, is presented in [13]. Some applications of this bound (e.g., exact values of $K_q(G)$ for hypercubes) are also produced.
In this paper we establish some bounds of $K_f(G)$ depending on dominating sets of G. We also determine exact values of $K_f(G)$ for some particular classes of graphs, especially for trees, forests, some cactuses, and dense graphs with a dominating vertex. Accordingly, we extend some known results, proved in [11] and [13], on $K_q(G)$ (as anti-Ramsey number) for complete graphs and complete multipartite graphs.

\section{Auxiliary Results}

It is easy to see that $|\varphi(v)| \leq \deg_G(v)$ for any edge coloring φ of a graph G and each vertex $v \in V(G)$. Therefore, throughout the paper we suppose that the function f satisfies

\begin{equation}
1 \leq f(v) \leq \deg_G(v) \quad \text{for every } v \in V(G).
\end{equation}

The following two claims are evident.

\begin{observation}
Let f be a function from the vertex set of a graph G to positive integers. Assume that G has k connected components. Let G_j, $j \in \{1, \ldots, k\}$, be a component of the graph G and let f_j be a restriction of f to $V(G_j)$. Then

$$K_f(G) = \sum_{j=1}^{k} K_{f_j}(G_j).$$

Given a graph G, let $e = uv$ be an edge of G such that $\deg_G(v) \geq 2$. By $S(G; e, v)$ we denote the graph with the vertex set $V(G) \cup \{v'\}$ and the edge set $(E(G) \setminus \{e\}) \cup \{uv'\}$.

\begin{observation}
Let f be a function from the vertex set of a graph G to integers satisfying (1). Let v be a vertex of G such that $f(v) = \deg_G(v) \geq 2$. For an edge e incident with v let h be a function from the vertex set of $S(G; e, v)$ to integers given by

$$h(u) = \begin{cases}
 f(u) & \text{if } u \notin \{v,v'\}, \\
 \deg_{S(G; e, v)}(u) & \text{if } u \in \{v,v'\}.
\end{cases}$$

Then

$$K_f(G) = K_h(S(G; e, v)).$$

Let φ be an M_f-edge coloring of G. For a set $U \subseteq V(G)$, let $\varphi(U)$ denote the set of colors of edges incident with vertices of U in G. Thus, $\varphi(U) = \bigcup_{v \in U} \varphi(v)$.

\begin{lemma}
Let φ be an M_f-edge coloring of a graph G and let U be a non-empty subset of $V(G)$. Then the following statements hold.
\end{lemma}
(i) $|\varphi(U)| \leq c + \sum_{u \in U} (f(u) - 1)$, where c denotes the number of connected components of $G[U]$.

(ii) If $G[U]$ is a 2-connected graph and $|\varphi(U)| = 1 + \sum_{u \in U} (f(u) - 1)$, then $|\{\varphi(e) : e \in E(G[U])\}| = 1$.

Proof. (i) First suppose that $G[U]$ is a connected graph. Denote the vertices of U by u_1, u_2, \ldots, u_k in such a way that the set $X_i = \{u_1, u_2, \ldots, u_i\}$ induces a connected subgraph of G for every $i \in \{1, 2, \ldots, k\}$. As $G[X_i]$ is connected for $i \geq 2$, there is j ($1 \leq j < i$) such that $u_i u_j$ is an edge of G. Therefore, $\varphi(u_i u_j) \in \varphi(X_{i-1}) \cap \varphi(u_i)$ and

$$|\varphi(X_i)| = |\varphi(X_{i-1}) \cup \varphi(u_i)| = |\varphi(X_{i-1})| + |\varphi(u_i)| - |\varphi(X_{i-1}) \cap \varphi(u_i)|$$

$$\leq |\varphi(X_{i-1})| + f(u_i) - 1.$$

Clearly, $|\varphi(X_i)| = |\varphi(u_i)| \leq f(u_i) = 1 + \sum_{u \in X_i} (f(u) - 1)$. Thus, by induction we get

$$|\varphi(X_i)| \leq |\varphi(X_{i-1})| + (f(u_i) - 1) \leq 1 + \sum_{u \in X_i} (f(u) - 1)$$

and consequently $|\varphi(U)| = |\varphi(X_k)| \leq 1 + \sum_{u \in U} (f(u) - 1)$.

If $G[U]$ is a disconnected graph, then the set U can be partitioned into disjoint subsets U_1, U_2, \ldots, U_c in such a way that $G[U_i]$ is a connected component of $G[U]$ for every $i \in \{1, 2, \ldots, c\}$. Therefore,

$$|\varphi(U)| = \left| \varphi \left(\bigcup_{i=1}^{c} U_i \right) \right| \leq \sum_{i=1}^{c} |\varphi(U_i)| \leq \sum_{i=1}^{c} \left(1 + \sum_{u \in U_i} (f(u) - 1) \right)$$

$$= c + \sum_{u \in U} (f(u) - 1).$$

(ii) Now suppose that $G[U]$ is 2-connected and $|\{\varphi(e) : e \in E(G[U])\}| > 1$. Then there are edges uw and vw in $E(G[U])$ such that $\varphi(uw) \neq \varphi(vw)$. Therefore, $|\varphi(w) \cap (\varphi(u) \cup \varphi(v))| \geq 2$ and consequently $|\varphi(w) \cap \varphi(U \setminus \{w\})| \geq 2$. As $G[U]$ is 2-connected, $G[U \setminus \{w\}]$ is connected and by (i)

$$|\varphi(U \setminus \{w\})| \leq 1 + \sum_{u \in U \setminus \{w\}} (f(u) - 1).$$

Hence $|\varphi(U)| \leq |\varphi(U \setminus \{w\})| + f(w) - 2 \leq \sum_{u \in U} (f(u) - 1)$, which completes the proof.

A subgraph H of a graph G is called an f-subgraph of G if $\deg_H(v) < f(v)$ for every $v \in V(H)$. The maximum number of edges in an f-subgraph of G is
denoted by \(\alpha_f(G) \) and the maximum number of edges in an \(f \)-subgraph of \(G[U] \) (\(U \subset V(G) \)) is denoted by \(\alpha_f(U) \) (i.e., \(\alpha_f(G) = \alpha_f(V(G)) \)). If \(f(v) = i \) for all \(v \in V(G) \), then \(\alpha_f(G) \) and \(\alpha_f(U) \) is denoted by \(\alpha_i(G) \) and \(\alpha_i(U) \), respectively.

Lemma 2. Let \(H \) be an \(f \)-subgraph of a graph \(G \). Then there is an \(M_f \)-edge coloring of \(G \) such that \(|\varphi(G)| = c + |E(H)| \), where \(c \) denotes the number of connected components of \(G[E(G) \setminus E(H)] \).

Proof. Denote by \(c_1, c_2, \ldots, c_k \) edges of \(H \) and by \(C_1, C_2, \ldots, C_c \) components of \(G[E(G) \setminus E(H)] \) (\(c = 0 \) when \(E(H) = E(G) \)). Consider a mapping \(\varphi \) from \(E(G) \) onto \(\{1, 2, \ldots, h + c\} \) given by

\[
\varphi(e) = \begin{cases} j & \text{if } e \in E(H) \text{ and } e = e_j, \\ h + j & \text{if } e \notin E(H) \text{ and } e \in C_j. \end{cases}
\]

Clearly, \(|\varphi(v)| \leq \deg_H(v) + 1 \leq f(v) \), for any vertex \(v \in V(G) \). Therefore, \(\varphi \) is a desired \(M_f \)-edge coloring of \(G \).

Lemma 3. Let \(G \) be a connected graph of order at least 2. Let \(c(v) \) denote the number of components of \(G - v \) and \(d(v) = \min\{c(v), f(v)\} \) for every \(v \in V(G) \). Then there is an \(M_f \)-edge coloring \(\varphi \) of \(G \) such that

\[
|\varphi(G)| = 1 + \sum_{v \in V(G)} (d(v) - 1) \text{ and } |\varphi(v)| = d(v) \text{ for every } v \in V(G).
\]

Proof. Denote vertices of \(U = \{u \in V(G) : d(u) > 1\} \) by \(u_1, u_2, \ldots, u_k \). Put \(U_0 = \emptyset, s_0 = 0 \) and \(U_i = U_{i-1} \cup \{u_i\}, s_i = s_{i-1} + d(u_i) - 1, \) for \(i \in \{1, 2, \ldots, k\} \). Evidently, \(s_i = \sum_{v \in U_i} (d(v) - 1) \). For all \(i \in \{0, 1, \ldots, k\} \), define the \(M_f \)-edge coloring \(\varphi_i \) of \(G \) recursively in the following way.

Let \(\varphi_0 \) be a mapping from \(E(G) \) to \(\{0\} \). As \(\varphi_0(e) = 0 \), for every edge \(e \in E(G) \), \(|\varphi_0(G)| = 1 = 1 + s_0 \) and \(|\varphi_0(v)| = 1 \) for each \(v \in V(G) \).

Now suppose that a mapping \(\varphi_i \) from \(E(G) \) onto \(\{0, 1, \ldots, s_i\} \) is an \(M_f \)-edge coloring of \(G \) such that \(|\varphi_i(v)| = d(v) \) for \(v \in U_i \) and \(|\varphi_i(v)| = 1 \) for \(v \in V(G) \setminus U_i \). As \(u_{i+1} \notin U_i \), \(|\varphi_i(u_{i+1})| = 1 \). Since \(d(u_{i+1}) > 1 \), the graph \(G - u_{i+1} \) is disconnected with \(c(u_{i+1}) \) components. As \(c(u_{i+1}) \geq d(u_{i+1}) \), we can choose components \(C_1, C_2, \ldots, C_t \) (where \(t = d(u_{i+1}) - 1 \)) of \(G - u_{i+1} \). For each \(j \in \{1, 2, \ldots, t\} \), let \(H_j \) be a subgraph of \(G \) induced by \(V(C_j) \cup \{u_{i+1}\} \). Consider a mapping \(\varphi_{i+1} \) from \(E(G) \) onto \(\{0, 1, \ldots, s_{i+1}\} \) given by

\[
\varphi_{i+1}(e) = \begin{cases} s_i + j & \text{if } \varphi_i(e) \in \varphi_i(u_{i+1}) \text{ and } e \in E(H_j), \\ \varphi_i(e) & \text{otherwise.} \end{cases}
\]

Evidently, \(|\varphi_{i+1}(v)| = |\varphi_i(v)| \) for \(v \in V(G) \setminus \{u_{i+1}\} \), and \(|\varphi_{i+1}(u_{i+1})| = 1 + t = d(u_{i+1}) \). Therefore, \(\varphi_{i+1} \) is an \(M_f \)-edge coloring of \(G \) such that \(|\varphi_{i+1}(G)| = \)
Moreover, $|\phi_{i+1}(v)| = d(v)$ for $v \in U_{i+1}$ and $|\phi_{i+1}(v)| = 1$ for $v \in V(G) \setminus U_{i+1}$.

Thus, there is an M_f-edge coloring φ ($\varphi = \varphi_k$) of G such that $|\varphi(G)| = 1 + s_k$, $|\varphi(v)| = d(v)$ for $v \in U_k = U$, and $|\varphi(v)| = 1$ for $v \in V(G) \setminus U$. As $d(v) = 1$ for each $v \in V(G) \setminus U$, φ is a desired coloring.

\section{Main Results}

A set $D \subseteq V(G)$ is called dominating in G, if for each $v \in V(G) \setminus D$ there exists a vertex $u \in D$ adjacent to v.

\textbf{Theorem 1.} Let D be a dominating set of a graph G. If c denotes the number of connected components of $G[D]$, then

$$K_f(G) \leq c + \sum_{u \in D} (f(u) - 1) + \alpha_f(V(G) \setminus D).$$

\textbf{Proof.} Let φ be an M_f-edge coloring of G which uses $K_f(G)$ colors, i.e., $|\varphi(G)| = K_f(G)$. Suppose that A is a subset of $E(G)$ containing exactly one edge of each color belonging to $\varphi(G) \setminus \varphi(D)$. Let H be a subgraph of G induced by A. Evidently, the graph H is an f-subgraph of G and $V(H) \subseteq V(G) \setminus D$. Therefore, $|A| = |E(H)| \leq \alpha_f(V(G) \setminus D)$. Thus,

$$K_f(G) = |\varphi(D)| + |A| \leq |\varphi(D)| + \alpha_f(V(G) \setminus D).$$

According to Lemma 1, $|\varphi(D)| \leq c + \sum_{u \in D} (f(u) - 1)$ and the desired inequality follows.

The following result presents some graphs achieving the bound established in Theorem 1.

\textbf{Theorem 2.} Let D be a dominating set of a connected graph G satisfying

(i) $|D| \geq 2$;
(ii) $G[D]$ is a connected subgraph of G;
(iii) if $u \in D$ and $c(u)$ is the number of connected components of $G[D] - u$, then there is at least $f(u) - c(u)$ vertices in $V(G) \setminus D$ adjacent to u;
(iv) $f(v) = \deg_G(v)$ for all $v \in V(G) \setminus D$.

Then

$$K_f(G) = 1 + |E(G[V(G) \setminus D])| + \sum_{u \in D} (f(u) - 1).$$
On M_f-Edge Colorings of Graphs

Proof. For each vertex \(v \in V(G) \setminus D \) there is a vertex in \(D \) adjacent to \(v \). Thus, \(\deg_{G[V(G) \setminus D]}(v) < \deg_G(v) = f(v) \). Therefore, \(G[V(G) \setminus D] \) is an \(f \)-subgraph of \(G \) and \(\alpha_f(V(G) \setminus D) = |E(G[V(G) \setminus D])| \). According to (ii), \(G[D] \) is a connected subgraph of \(G \), and by Theorem 1 we have

\[
K_f(G) \leq 1 + \sum_{u \in D} (f(u) - 1) + \alpha_f(V(G) \setminus D)
\]

\[
= 1 + \sum_{u \in D} (f(u) - 1) + |E(G[V(G) \setminus D])|
\]

On the other hand, according to (i) and (ii), \(G[D] \) is a connected graph of order at least 2. For every vertex \(u \in D \), set \(A(u) = \{uv \in E(G) : v \in V(G) \setminus D\} \), \(d(u) = \min\{c(u), f(u)\} \), and \(t(u) = f(u) - d(u) \). By (iii), \(|A(u)| \geq t(u) \). Thus, there is a set \(A^*(u) \) such that \(A^*(u) \subseteq A(u) \) and \(|A^*(u)| = t(u) \). Clearly,

\[
|E(G[V(G) \setminus D]) \cup \bigcup_{u \in D} A^*(u)| = |E(G[V(G) \setminus D])| + \sum_{u \in D} t(u).
\]

Therefore, there is a bijection \(\zeta \) from \(E(G[V(G) \setminus D]) \cup \bigcup_{u \in D} A^*(u) \) onto a set \(B \), where \(|B| = |E(G[V(G) \setminus D])| + \sum_{u \in D} t(u) \).

According to Lemma 3, there is an \(M_f \)-edge coloring \(\varphi \) of \(G[D] \) such that \(|\varphi(G[D])| = 1 + \sum_{u \in D} (d(u) - 1) \) and \(|\varphi(u)| = d(u) \) for each \(u \in D \). Moreover, we can assume that \(\varphi(G[D]) \) and \(B \) are disjoint sets. Now suppose that \(\xi \) is any mapping from \(D \) to \(\varphi(G[D]) \) satisfying \(\xi(u) \in \varphi(u) \) for each \(u \in D \). Consider the edge coloring \(\psi \) of \(G \) defined in the following way

\[
\psi(e) = \begin{cases}
\varphi(e) & \text{if } e \in E(G[D]), \\
\zeta(e) & \text{if } e \in A^*(u), \\
\xi(u) & \text{if } e \in A(u) \setminus A^*(u), \\
\zeta(e) & \text{if } e \in E(G[V(G) \setminus D]).
\end{cases}
\]

We have \(|\psi(u)| = |\varphi(u)| + |A^*(u)| = d(u) + t(u) = f(u) \), for any vertex \(u \in D \), and \(|\psi(v)| \leq \deg_G(v) = f(v) \), for any vertex \(v \in V(G) \setminus D \). So, \(\psi \) is an \(M_f \)-edge coloring of \(G \) which uses \(|\varphi(G[D])| + |B| \) colors. Hence

\[
|\psi(G)| = 1 + \sum_{u \in D} (d(u) - 1) + |E(G[V(G) \setminus D])| + \sum_{u \in D} t(u)
\]

\[
= 1 + \sum_{u \in D} (d(u) - 1 + t(u)) + |E(G[V(G) \setminus D])|
\]

\[
= 1 + \sum_{u \in D} (f(u) - 1) + |E(G[V(G) \setminus D])|,
\]

i.e., \(K_f(G) \geq 1 + \sum_{u \in D} (f(u) - 1) + |E(G[V(G) \setminus D])| \).
Recall that a connected graph in which every edge belongs to at most one cycle is called a cactus.

Corollary 3. Let G be a cactus of order at least 2. For every vertex $u \in V(G)$, let $\nu(u)$ denote the number of cycles of G containing u. If $f(u) + \nu(u) \leq \deg_G(u)$, for all $u \in V(G)$, then

$$K_f(G) = 1 + \sum_{u \in V(G)} (f(u) - 1).$$

Proof. Evidently, $D = V(G)$ is a dominating set of G. As G is a cactus, $c(u)$, the number of connected components of $G - u$, is equal to $\deg_G(u) - \nu(u)$ for every vertex $u \in V(G)$. Then, $f(u) - c(u) = f(u) + \nu(u) - \deg_G(u) \leq 0$. Therefore, the conditions of Theorem 2 are satisfied. Moreover, $|E(G[V(G) \setminus D])| = 0$. According to Theorem 2, the result follows.

Corollary 4. Let T be a tree of order at least 2. Let f be a function from $V(T)$ to positive integers satisfying (1). Then

$$K_f(T) = 1 + \sum_{u \in V(T)} (f(u) - 1) = |E(T)| - \sum_{u \in V(T)} (\deg_T(u) - f(u)).$$

Especially, if q is a positive integer, then

$$K_q(T) = 1 + (q - 1)|V(T)| - \sum_{j=1}^{q-1} (q - j)|V_j(T)|.$$

Proof. Each tree is a cactus without cycles. Therefore, by Corollary 3,

$$K_f(T) = 1 + \sum_{u \in V(T)} (f(u) - 1) = 1 + \sum_{u \in V(T)} f(u) - |V(T)|$$

$$= \sum_{u \in V(T)} f(u) - |E(T)| = |E(T)| + \sum_{u \in V(T)} f(u) - 2|E(T)|$$

$$= |E(T)| + \sum_{u \in V(T)} f(u) - \sum_{u \in V(T)} \deg_T(u)$$

$$= |E(T)| - \sum_{u \in V(T)} (\deg_T(u) - f(u)).$$

Now consider a function t from $V(T)$ to positive integers given by

$$t(u) = \min\{\deg_T(u), q\}.$$
Then
\[
\sum_{u \in V(T)} t(u) = \Delta(T) \left(\sum_{j=1}^{q-1} \sum_{u \in V(T) \text{ such that } \deg_T(u) = j} t(u) \right) = \sum_{j=1}^{q-1} j |V_j(T)| + \Delta(T) \sum_{j=q}^{\infty} q |V_j(T)|
\]
\[
= \sum_{j=1}^{\Delta(T)} q |V_j(T)| - \sum_{j=1}^{q-1} (q-j) |V_j(T)| = q |V(T)| - \sum_{j=1}^{q-1} (q-j) |V_j(T)|.
\]

Evidently, \(K_q(T) = K_t(T)\). Thus
\[
K_q(T) = 1 + \sum_{u \in V(T)} (t(u) - 1) = 1 + \sum_{u \in V(T)} t(u) - |V(T)|
\]
\[
= 1 + q |V(T)| - \sum_{j=1}^{q-1} (q-j) |V_j(T)| - |V(T)|
\]
\[
= 1 + (q-1) |V(T)| - \sum_{j=1}^{q-1} (q-j) |V_j(T)|,
\]
which completes the proof.

Corollary 5. Let \(F\) be a forest whose every component is of order at least 2. Let \(f\) be a function from \(V(F)\) to positive integers satisfying (1). Then
\[
K_f(F) = |E(F)| - \sum_{u \in V(F)} \left(\deg_F(u) - f(u) \right).
\]

Proof. Let \(T_j, j \in \{1, \ldots, k\}\), be a component of \(F\) and let \(f_j\) be a restriction of \(f\) to \(V(T_j)\). Every component of \(F\) is a tree, thus, by Observation 1 and Corollary 4, we have
\[
K_f(F) = \sum_{j=1}^{k} K_{f_j}(T_j) = \sum_{j=1}^{k} \left(|E(T_j)| - \sum_{u \in V(T_j)} \left(\deg_{T_j}(u) - f(u) \right) \right)
\]
\[
= |E(F)| - \sum_{u \in V(F)} \left(\deg_F(u) - f(u) \right),
\]
which completes the proof.

Corollary 6. Let \(f\) be a function from the vertex set of a graph \(G\) to positive integers satisfying (1). If every cycle of \(G\) contains a vertex \(v\) such that \(f(v) = \deg_G(v)\), then
\[
K_f(G) = |E(G)| - \sum_{u \in V(G)} \left(\deg_G(u) - f(u) \right).
\]
Proof. Suppose that G is a counterexample with the minimum number of cycles. According to Corollary 5, G contains a cycle C. Then there is a vertex v of C such that $f(v) = \deg_G(v)$. Let e be an edge of the cycle C incident with v. Consider a graph $H = S(G; e, v)$ and a function h from $V(H)$ to positive integers defined by

$$h(u) = \begin{cases} f(u) & \text{if } u \in V(H) \setminus \{v, v'\}, \\ \deg_H(u) & \text{if } u \in \{v, v'\}. \end{cases}$$

Clearly, every cycle of H is also a cycle in G and it contains a vertex w such that $h(w) = \deg_H(w)$. Moreover, H has less cycles than G and so it is not a counterexample. Then, $K_h(H) = |E(H)| - \sum_{u \in V(H)} (\deg_H(u) - h(u))$. By Observation 2, $K_f(G) = K_h(H)$. Therefore,

$$K_f(G) = K_h(H) = |E(H)| - \sum_{u \in V(H)} (\deg_H(u) - h(u)) \leq |E(G)| - \sum_{u \in V(G)} (\deg_G(u) - f(u)),$$

a contradiction to the choice of G.

The following result present other graphs achieving the bound established in Theorem 1.

Theorem 3. Let D be a dominating set of a graph G such that $|D| \geq 2$ and $G[D]$ is a connected subgraph of G. Let I be a set of isolated vertices in $G[V(G) \setminus D]$. If there is a spanning subgraph B of G satisfying

(i) every edge of B is incident with a vertex in I,
(ii) $\deg_B(u) = f(u) - 1$ if $u \in D$,
(iii) $\deg_B(u) < f(u)$ if $u \in I$ and $\deg_G(u) > f(u),$

then

$$K_f(G) = 1 + \sum_{u \in D} (f(u) - 1) + \alpha_f(V(G) \setminus D).$$

Proof. Set $k = \sum_{u \in D} (f(u) - 1)$ and $\alpha = \alpha_f(V(G) \setminus D)$. According to (i), every edge of B connects a vertex from I with one from D. Moreover, by (ii), $|E(B)| = k$. Let H be an f-subgraph of $G[V(G) \setminus D]$ having α edges. Clearly, no edge of H is incident with a vertex in I.

Denote by e_1, e_2, \ldots, e_k edges of B and by $a_1, a_2, \ldots, a_\alpha$ edges of H. Consider the mapping ψ from $E(G)$ onto $\{1, 2, \ldots, 1 + k + \alpha\}$ given by

$$\psi(e) = \begin{cases} j & \text{if } e \in E(B) \text{ and } e = e_j, \\ k + j & \text{if } e \in E(H) \text{ and } e = a_j, \\ 1 + k + \alpha & \text{if } e \notin E(B) \cup E(H). \end{cases}$$
According to (ii), $|ψ(u)| = f(u)$, for any vertex $u ∈ D$. By (iii), $|ψ(u)| ≤ f(u)$, for any vertex $u ∈ I$. Similarly, $|ψ(u)| ≤ f(u)$, for any vertex $u ∈ V(G) \setminus (D \cup I)$, because H is an f-subgraph. Therefore, $ψ$ is an M_f-edge coloring of G.

Consequently, $K_f(G) ≥ |ψ(G)| = 1 + k + α$. The opposite inequality follows from Theorem 1.

Recall that the join of two graphs G and H is obtained from vertex-disjoint copies of G and H by adding all edges between $V(G)$ and $V(H)$.

Corollary 7. Let q, n and m be integers such that $q ≥ 2$, $n ≥ 2$, $m ≥ q − 1$ when $n ≤ q$, and $m ≥ n$ when $n > q$. Let G_1 and G_2 be disjoint graphs such that $|V(G_1)| = n$, G_2 contains m isolated vertices, and let G be the join of G_1 and G_2. Then

$$K_q(G) = 1 + n(q − 1) + α_q(V(G_2)).$$

Proof. Clearly, $V(G_1)$ is a dominating set of G. Let I be the set of isolated vertices in G_2. Then G contains the complete bipartite subgraph with parts $V(G_1)$ and I (i.e., the subgraph isomorphic to $K_{n,m}$). The graph $K_{n,m}$ contains either a subgraph isomorphic to $K_{n,q−1}$ (if $n ≤ q$), or a $(q−1)$-regular subgraph of order $2n$ (if $n > q$). Thus, there is a spanning subgraph B of G satisfying conditions (i)–(iii) from Theorem 3, and the assertion follows.

A complete k-partite graph is a graph whose vertices can be partitioned into $k ≥ 2$ disjoint classes V_1, \ldots, V_k such that two vertices are adjacent whenever they belong to distinct classes. If $|V_i| = n_i$, $i = 1, \ldots, k$, then the complete k-partite graph is denoted by K_{n_1, \ldots, n_k}.

In [13] there are stated some results on $K_q(G)$ for complete multipartite graphs with parts of size at least $q−1$. In the following assertion we consider complete multipartite graphs that can contain parts of size less than $q−1$, so we extend the result from [13]. The complete k-partite graph $K_{n_1, \ldots, n_{k−1}, n_k}$ is the join of $K_{n_1, \ldots, n_{k−1}}$ and the totally disconnected graph of order n_k. Thus, according to Corollary 7, we immediately have the following statement.

Corollary 8. Let q, k, n_1, \ldots, n_k and p be integers such that $q ≥ 2$, $k ≥ 3$, $1 ≤ n_1 ≤ \cdots ≤ n_k$, $p = \sum_{j=1}^{k-1} n_j$, $n_k ≥ q − 1$ when $p ≤ q$, and $n_k ≥ p$ when $p > q$. Then

$$K_q(K_{n_1, \ldots, n_k}) = 1 + p(q − 1).$$

The corona $G \odot H$ of graphs G and H is obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining by an edge the i'th vertex of G to every vertex in the i'th copy of H.

According to Theorem 3, we immediately have the following assertion.
Corollary 9. Let q be a positive integer. Let G be a connected graph of order at least two and let H be a graph containing at least $q - 1$ isolated vertices. Then

$$\mathcal{K}_q(G \odot H) = 1 + |V(G)|(q - 1 + \alpha_q(H)).$$

A vertex of a graph G is called a dominating vertex if it is adjacent to every other vertex of G.

Theorem 4. Let w be a dominating vertex of a graph G. Let f be a function from $V(G)$ to positive integers such that $\deg_G(u) \geq f(u) + \left\lceil \left(|V(G)| + f(w) - 3 \right)/2 \right\rceil$, for every vertex u of G. Then

$$\mathcal{K}_f(G) = 1 + \alpha_f(G).$$

Proof. Suppose that φ is an M_f-edge coloring of G which uses $\mathcal{K}_f(G)$ colors (i.e., $|\varphi(G)| = \mathcal{K}_f(G)$). Denote colors of $\varphi(w)$ by c_1, \ldots, c_k ($k = |\varphi(w)|$) and set $U_j = \{u \in V(G) \setminus \{w\} : \varphi(wu) = c_j\}$ for each $j \in \{1, \ldots, k\}$.

Let A be a subset of $E(G)$ containing exactly one edge of each color belonging to $\varphi(G) \setminus \varphi(w)$. Let H be a subgraph of G such that $V(H) = V(G) \setminus \{w\}$ and $E(H) = A$. Evidently, the graph H is an f-subgraph of G. Set

$$X = \{v \in V(H) : \deg_H(v) = f(v) - 1\}$$

and

$$Y = \{v \in V(H) : \deg_H(v) < f(v) - 1\}.$$

First suppose that $|Y| \leq k - 2$. As U_1, U_2, \ldots, U_k are pairwise disjoint, at most $|Y|$ sets of them contain a vertex of Y. Then there are at least two sets, without loss of generality U_1 and U_2, such that $U_1 \cap Y = \emptyset = U_2 \cap Y$. Moreover, we can assume that $|U_1| \leq |U_2|$. Thus, $|U_1| \leq \lfloor |X|/2 \rfloor = \lfloor (|V(G)| - 1 - |Y|)/2 \rfloor$.

Let u^* be a vertex of U_1. As

$$|\{w\}| + |U_1 \setminus \{u^*\}| + |Y| \leq 1 + \left\lceil \frac{|V(G)| - 1 - |Y|}{2} \right\rceil - 1 + |Y|$$

$$= \left\lfloor \frac{|V(G)| + |Y| - 1}{2} \right\rfloor \leq \left\lfloor \frac{|V(G)| + k - 3}{2} \right\rfloor \leq \frac{|V(G)| + f(w) - 3}{2},$$

there are at least $f(u^*)$ vertices of $X \setminus U_1$ that are adjacent to u^* in G. Since $\deg_H(u^*) = f(u^*) - 1$, there is a vertex $v^* \in X \setminus U_1$ such that $u^*v^* \in E(G)$ and $u^*v^* \notin E(H)$. As $v^* \in X \setminus U_1$, there is i, $2 \leq i \leq k$, such that $v^* \in U_i$. Since $\deg_H(v^*) = f(v^*) - 1$, for each color $c \in \varphi(v^*) \setminus \{c_i\}$, there is a vertex $x \in N_H(v^*)$ such that $\varphi(v^*) = c$. Similarly, for each color $c \in \varphi(u^*) \setminus \{c_1\}$, there is a vertex $x \in N_H(u^*)$ such that $\varphi(u^*x) = c$. Therefore, $(\varphi(u^*) \setminus \{c_1\}) \cap (\varphi(v^*) \setminus \{c_i\}) = \emptyset$, because the vertices u^* and v^* are not adjacent in H. As the colors c_1 and c_i are distinct, $\varphi(u^*) \cap \varphi(v^*) = \emptyset$. Consequently, $\varphi(u^*v^*) \notin \varphi(u^*) \cap \varphi(v^*) = \emptyset$, a contradiction. So, this case is impossible.
Then $|Y| \geq k - 1$ and there are vertices y_1, \ldots, y_{k-1} belonging to Y. Set $A^* = A \cup \{wy_j : 1 \leq j \leq k-1\}$ and consider a subgraph F of G induced by A^*. Clearly, F is an f-subgraph of G and so $|A^*| \leq \alpha_f(G)$. Hence

$$K_f(G) = |\phi(G)| = |\phi(w)| + |A| = 1 + (k - 1) + |A| = 1 + |A^*| \leq 1 + \alpha_f(G).$$

The opposite inequality follows from Lemma 2.

Corollary 10. Let q be a positive integer. Let G be a graph such that $\Delta(G) = |V(G)| - 1$ and $\delta(G) \geq \left\lfloor \left(|V(G)| + 3q - 3 \right) / 2 \right\rfloor$. Then

$$K_q(G) = 1 + \left\lfloor \frac{(q - 1)|V(G)|}{2} \right\rfloor.$$

Proof. The case when $q = 1$ is evident, so next we consider $q \geq 2$.

As $\delta(G) \geq \left\lfloor \left(|V(G)| + 3q - 3 \right) / 2 \right\rfloor \geq \left(3q - 4 \right) / 2 + |V(G)| / 2$, there are pairwise edge-disjoint Hamilton cycles C_1, C_2, \ldots, C_k, where $k = \left\lceil (q-1) / 2 \right\rceil$, in G (because of Dirac’s theorem). Suppose that A is a subset of $E(C_1)$ such that it consists of either $\left\lfloor |V(G)| / 2 \right\rfloor$ independent edges, when q is even, or all edges of C_1, when q is odd. Set $A^* = A \cup \bigcup_{j=2}^{k} E(C_j)$. It is easy to see that the subgraph of G induced by A^* is a q-subgraph with the maximum number of edges, i.e., $\alpha_q(G) = |A^*| = \left\lceil (q - 1)|V(G)| / 2 \right\rceil$. Therefore, according to Theorem 4, we have the assertion. ■

In [11] there is determined $K_q(K_n)$ within 1, for $n \geq q + 2$. Note that, by Corollary 10, $K_q(K_n) = 1 + \left\lfloor (q - 1)n / 2 \right\rfloor$, for $n \geq 3q - 1$, which is an extension of the result from [11].

References

Received 3 December 2019
Revised 30 April 2020
Accepted 30 April 2020