A NEW UPPER BOUND FOR THE PERFECT ITALIAN DOMINATION NUMBER OF A TREE

Sakineh Nazari-Moghaddam

Department of Mathematics
Dehloran Branch
University of Applied Science and Technology
Dehloran, Iran

e-mail: sakine.nazari.m@gmail.com

AND

Mustapha Chellali

LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida, Algeria

e-mail: m.chellali@yahoo.com

Abstract

A perfect Italian dominating function (PIDF) on a graph G is a function $f : V(G) \to \{0, 1, 2\}$ satisfying the condition that for every vertex u with $f(u) = 0$, the total weight of f assigned to the neighbors of u is exactly two. The weight of a PIDF is the sum of its functions values over all vertices. The perfect Italian domination number of G, denoted $\gamma^p_I(G)$, is the minimum weight of a PIDF of G. In this paper, we show that for every tree T of order $n \geq 3$, with $\ell(T)$ leaves and $s(T)$ support vertices, $\gamma^p_I(T) \leq \frac{4n - \ell(T) + 2s(T) - 15}{5}$, improving a previous bound given by T.W. Haynes and M.A. Henning in [Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–177].

Keywords: Italian domination, Roman domination, perfect Italian domination.

2010 Mathematics Subject Classification: 05C69.
1. Introduction

Throughout this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V,E). The order $|V|$ of G is denoted by $n = n(G)$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = N(v) = \{ u \in V(G) \mid uv \in E(G) \}$ and its closed neighborhood is the set $N_G[v] = N[v] = N(v) \cup \{ v \}$. The degree of a vertex $v \in V$ is $\deg_G(v) = |N(v)|$. A leaf of G is a vertex of degree one and a support vertex is a vertex adjacent to a leaf. An end support vertex is a support vertex having at most one non-leaf neighbor. For every vertex $v \in V$, the set of all leaves adjacent to v is denoted by $L(v)$ and $L[v] = L(v) \cup \{ v \}$.

We denote the set of leaves of a graph G by $L(G)$ and the set of support vertices by $S(G)$. We also let $|S(G)| = s(G)$ and $|L(G)| = \ell(T)$. A double star $DS_{q,p}$, with $q \geq p \geq 1$, is a graph consisting of the union of two stars $K_{1,q}$ and $K_{1,p}$ together with an edge joining their centers. The subdivision graph $S_b(G)$ of a graph G is that graph obtained from G by replacing each edge uv of G by a vertex w and edges uw and vw. A healthy spider $S_k(G)$ is the subdivision graph of a star $K_{1,k}$ for $k \geq 2$. A wounded spider $S_{k,t}$ is a graph obtained from a star $K_{1,k}$ by subdividing t edges exactly once, where $1 \leq t \leq k - 1$. We denote by P_n the path on n vertices. The distance $d_G(u,v)$ between two vertices u and v in a connected graph G is the length of a shortest $u - v$ path in G. The diameter of a graph G, denoted by $\text{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of v, $D(v)$ denotes the set of descendants of v and $D[v] = D(v) \cup \{ v \}$. Also, the depth of v, $\text{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_v.

For a real-valued function $f : V \rightarrow \mathbb{R}$, the weight of f is $\omega(f) = \sum_{v \in V} f(v)$, and for $S \subseteq V$ we define $f(S) = \sum_{v \in S} f(v)$. So $w(f) = f(V)$.

A Roman dominating function on G, abbreviated RDF, is a function $f : V \rightarrow \{0,1,2\}$ such that every vertex $u \in V$ for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. Roman domination was introduced by Cockayne et al. in [7] and was inspired by the work of ReVelle and Rosing [12] and Stewart [13]. Several new varieties of Roman domination have been introduced since 2004, among them, we quote the Italian domination originally published in [1] and called Roman $\{2\}$-domination. Further results on Roman domination and its variant can be found in [2–6].

An Italian dominating function on G, abbreviated IDF, is a function $f : V \rightarrow \{0,1,2\}$ satisfying the condition that for every vertex $v \in V$ with $f(v) = 0$, $\sum_{u \in N(v)} f(u) \geq 2$, that is either v is adjacent to a vertex u with $f(u) = 2$, or to at least two vertices x and y with $f(x) = f(y) = 1$. The Italian domination number, denoted $\gamma_I(G)$, is the minimum weight of an IDF in G.

The concept of perfect dominating sets introduced by Livingston and Stout.
in [11] has been extended to Roman and Italian dominating functions in [10] and [9], respectively. An RDF \(f \) is called perfect if for every vertex \(v \) with \(f(v) = 0 \), there is exactly one vertex \(u \in N(v) \) with \(f(u) = 2 \), while a IDF \(g \) is perfect if for every vertex \(w \) with \(g(w) = 0 \), \(g(N(v)) = 2 \). The perfect Roman domination number (respectively, perfect Italian domination number) of \(G \), denoted \(\gamma^p_R(G) \) (respectively, \(\gamma^p_I(G) \)), is the minimum weight of a perfect RDF (respectively, perfect IDF) in \(G \). A perfect IDF on \(G \) will be abbreviated PIDF. A PIDF \(f \) is called a \(\gamma^p_I(G) \)-function if \(\omega(f) = \gamma^p_I(G) \).

It was shown in [10] that every tree \(T \) of order \(n \geq 3 \) satisfies \(\gamma^p_R(T) \leq \frac{4}{5}n \). However, this upper bound has recently been improved by Darko et al. [8] for trees \(T \) with \(\ell(T) \geq 2s(T) - 2 \), by showing that for any tree \(T \) of order \(n \geq 3 \) with \(\ell(T) \) leaves and \(s(T) \) support vertices, \(\gamma^p_R(T) \leq (4n - \ell(T) + 2s(T) - 2)/5 \). Moreover, Henning and Haynes showed in [9] that \(\frac{2}{5}n \) is also an upper bound of the perfect Italian domination number for any tree of order \(n \geq 3 \).

In this paper, we shall show that for any tree \(T \) of order \(n \geq 3 \) with \(\ell(T) \) leaves and \(s(T) \) support vertices, \(\gamma^p_R(T) \leq (4n - \ell(T) + 2s(T) - 1)/5 \). But first let us point out that for both parameters \(\gamma^p_R(G) \) and \(\gamma^p_I(G) \), one may be larger or smaller than the other even for trees. Indeed, for the path \(P_5 \) we have \(\gamma^p_R(P_5) = 4 \) and \(\gamma^p_I(P_5) = 3 \) while for the double star \(DS_{3,1} \) we have \(\gamma^p_R(DS_{3,1}) = 3 \) and \(\gamma^p_I(DS_{3,1}) = 4 \). The next result shows that the differences \(\gamma^p_I(G) - \gamma^p_R(G) \) and \(\gamma^p_R(G) - \gamma^p_I(G) \) can be arbitrarily large.

Observation 1. For any integer \(k \geq 1 \), there exist trees \(T_k \) and \(H_k \) such that \(\gamma^p_I(T_k) - \gamma^p_R(T_k) = k \) and \(\gamma^p_R(H_k) - \gamma^p_I(H_k) = k \).

Proof. Let \(T_k \) be the tree formed by \(k \) double stars \(DS_{3,1} \) by adding a new vertex attached to every support vertex of degree four. One can easily see that \(\gamma^p_I(T_k) = 4k + 1 \) while \(\gamma^p_R(T_k) = 3k + 1 \).

Now, let \(H_k \) be the tree formed by \(k \) paths \(P_5 \) by adding a new vertex attached to all center vertices of the paths. Then \(\gamma^p_I(H_k) = 3k + 1 \) while \(\gamma^p_R(H_k) = 4k + 1 \).

2. New Upper Bound

In this section, we present our main result which is an upper bound on the perfect Italian domination number of a tree.

Theorem 2. If \(T \) is a tree of order \(n \geq 3 \) with \(\ell(T) \) leaves and \(s(T) \) support vertices, then

\[
\gamma^p_I(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Proof. We proceed by induction on the order \(n \). If \(n \in \{3, 4\} \), then clearly \(\gamma^p_I(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} \), establishing the base case. Let \(n \geq 5 \) and assume that
any tree T' of order n', with $3 \leq n' < n$ satisfies $\gamma_{lp}^{P}(T') \leq \frac{4n-\ell(T') + 2s(T') - 1}{5}$. Let T be a tree of order n. If $\text{diam}(T) = 2$, then T is a star, where $\gamma_{lp}^{P}(T) = 2 \leq \frac{4n-\ell(T) + 2s(T) - 1}{5}$. If $\text{diam}(T) = 3$, then T is a double star, and since $n \geq 5$ we have $\gamma_{lp}^{P}(T) = 4 \leq \frac{4n-\ell(T) + 2s(T) - 1}{5}$. Hence, we may assume that T has diameter at least 4. If $n = 5$, then T is a path P_5, where $\gamma_{lp}^{P}(P_5) = 3 \leq \frac{4n-\ell(T) + 2s(T) - 1}{5}$. Hence let $n \geq 6$.

Suppose $v_1v_2\cdots v_k$ ($k \geq 5$) is a diametral path in T such that $\deg_T(v_2)$ is as large as possible. Root T at v_k. First, assume that T has an end support vertex y of degree three. Without loss of generality, assume that $y = v_2$. Let $T' = T - T_{v_2}$ and f' be a $\gamma_{lp}^{P}(T')$-function. If $f'(v_3) = 0$, then f' can be extended to a PIDF of T by assigning a 0 to v_2 and a 1 to the two leaves of v_2. If $f'(v_3) \geq 1$, then f' can be extended to a PIDF of T by assigning a 2 to v_2 and a 0 to the leaves of v_2. In either case, $\gamma_{lp}^{P}(T') \leq \gamma_{lp}^{P}(T) + 2$, and by the induction hypothesis we obtain

$$\gamma_{lp}^{P}(T) \leq \gamma_{lp}^{P}(T') + 2 \leq \frac{4n' - \ell(T') + 2s(T') - 1}{5} + 2 \leq \frac{4(n-3) - \ell(T) + 2 + 2s(T) - 1}{5} + 2 \leq \frac{4n - \ell(T) + 2s(T) - 1}{5}.$$

Hence we can assume that T has no end support vertex of degree three, in particular we have $\deg_T(v_2) \neq 3$. Next, suppose that $\deg_T(v_3) = 2$. If $\deg_T(v_2) = 2$, then let $T' = T - T_{v_2}$ and f' be a $\gamma_{lp}^{P}(T')$-function. Note that $n' = n - 3$, $s(T') \leq s(T)$ and $\ell(T') \geq \ell(T) - 1$. Now if $f'(v_4) = 0$, then the function f defined by $f'(v_2) = 2$, $f'(v_1) = f'(v_3) = 0$ and $f(x) = f'(x)$ for $x \in V(T) \setminus \{v_1, v_2, v_3\}$ is a PIDF of T. If $f'(v_4) \geq 1$, then the function f defined by $f(v_1) = f(v_3) = 1$, $f(v_2) = 0$ and $f(x) = f'(x)$ for $x \in V(T) \setminus \{v_1, v_2, v_3\}$ is a PIDF of T. In either case, $\gamma_{lp}^{P}(T) \leq \gamma_{lp}^{P}(T') + 2$, and by the induction hypothesis we obtain

$$\gamma_{lp}^{P}(T) \leq \gamma_{lp}^{P}(T') + 2 \leq \frac{4(n-3) - \ell(T) + 1 + 2s(T) - 1}{5} + 2 \leq \frac{4n - \ell(T) + 2s(T) - 1}{5}.$$

Suppose now that $\deg_T(v_2) \geq 4$. Let $T' = T - T_{v_3}$ and f' be a γ_{lp}^{P}-function of T'. Note that T' has order $n' \geq 2$. Clearly if $n' = 2$, then $\gamma_{lp}^{P}(T) = 4 \leq \frac{4n - \ell(T) + 2s(T) - 1}{5}$. Hence we assume that $n' \geq 3$. If $f'(v_4) = 0$, then we can extend f' to a PIDF of T by assigning a 2 to v_2 and a 0 to every neighbor of v_2. If $f'(v_4) \geq 1$, then we can extend f' to a PIDF f of T by assigning a 2 to v_2, a 1 to v_3, and a 0 to all leaves of v_2. In either case, $\gamma_{lp}^{P}(T) \leq \gamma_{lp}^{P}(T') + 3$ and by the induction hypothesis we obtain
\[
\gamma_p^p(T) \leq \gamma_p^p(T') + 3 \leq \frac{4n' - \ell(T') + 2s(T') - 1}{5} + 3
\]
\[
\leq \frac{4(n - |L(v_2)| - 2) - (\ell(T) - |L(v_2)|) + 2s(T) - 1}{5} + 3
\]
\[
= \frac{4n - \ell(T) + 2s(T) - 1 - 3L(v_2) - 8}{5} + 3 < \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

From now on, we can assume that \(\deg_T(v_3) \geq 3\) and \(\deg_T(v_2) \neq 3\). Note that often in our proof a subtree \(T'\) of \(T\) is considered, and so in either case, let \(f'\) be a \(\gamma_p^p(T')\)-function. Consider the following cases.

Case 1. \(\deg_T(v_2) \geq 4\) and \(T_{v_3} \neq DS_{3,1}\). Let us examine the following situations.

Subcase 1.1. \(v_3\) has at least two leaves. Let \(T'\) be the tree of order \(n'\) obtained from \(T\) by removing all leaves of \(v_2\). Note that \(n' = n - |L(v_2)|\), \(s(T') = s(T) - 1\) and \(\ell(T') = \ell(T) - |L(v_2)| + 1\). Since \(v_3\) has at least three leaves in \(T'\), we conclude that \(f'(v_3) \geq 1\). Hence the function \(f\) defined by \(f(v_2) = 2\), \(f(x) = 0\) for all \(x \in L(v_2)\) and \(f(x) = f'(x)\) for \(x \in V(T) \setminus L[v_2]\) is a PIDF of \(T\). It follows that \(\gamma_p^p(T) \leq \gamma_p^p(T') + 2\), and by the induction hypothesis we obtain
\[
\gamma_p^p(T) \leq \gamma_p^p(T') + 2 \leq \frac{4(n - |L(v_2)|) - \ell(T) + |L(v_2)| - 1 + 2s(T) - 3}{5} + 2
\]
\[
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Subcase 1.2. \(v_3\) has exactly one leaf, say \(v'\). If \(v_2\) is the unique child of \(v_3\) with depth 1, then let \(T'\) be the tree of order \(n'\) obtained from \(T\) by removing all vertices in \(T_{v_2}\) and adding two new vertices \(x_1, x_2\) attached at \(v_3\). Since \(v_3\) has at least three leaves, we have \(f'(v_3) \geq 1\), and thus the function \(f\) defined by \(f(v_2) = 2\), \(f(x) = 0\) for \(x \in L(v_2)\) and \(f(x) = f'(x)\) for \(x \in V(T) \setminus L[v_2]\) is a PIDF of \(T\). Hence \(\gamma_p^p(T) \leq \gamma_p^p(T') + 2\), and since \(T_{v_3} \neq DS_{3,1}\), we must have \(|L(v_2)| \geq 4\). It follows from the induction hypothesis that
\[
\gamma_p^p(T) \leq \gamma_p^p(T') + 2 \leq \frac{4(n + 1 - |L(v_2)|) - \ell(T) + |L(v_2)| - 2 + 2s(T) - 3}{5} + 2
\]
\[
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Suppose that \(v_3\) has (at least) two children with depth 1, say \(a\) and \(b\) such that \(\deg_T(a) \geq 4\) and \(\deg_T(b) \geq 4\). Let \(T'\) be the tree formed from \(T\) by deleting all leaves of \(a\) and \(b\). Note that \(n' = n - |L(a)| - |L(b)|\), \(s(T') = s(T) - 2\) and \(\ell(T') = \ell(T) - |L(a)| - |L(b)| + 2\). Clearly, \(f'(v_3) \geq 1\) since \(v_3\) has three leaves in \(T'\). Thus the function \(f\) defined by \(f(a) = f(b) = 2\), \(f(x) = 0\) for all
\[x \in L(a) \cup L(b) \text{ and } f(x) = f'(x) \text{ for all } x \in V(T) \backslash (L[a] \cup L[b]) \text{ is a PIDF of } T, \text{ and so } \gamma_f^p(T) \leq \gamma_f^p(T') + 4. \text{ Using the fact } |L(a)| \geq 3 \text{ and } |L(b)| \geq 3 \text{ and the induction hypothesis we obtain}
\]
\[
\gamma_f^p(T) \leq \frac{4(n - |L(a)| - |L(b)|) - \ell(T) + |L(a)| + |L(b)| - 2 + 2s(T) - 5}{5} + 4
\leq \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Hence we can assume now that \(v_2\) is the unique child of \(v_3\) with depth one and degree at least 4. Recall that since \(\deg_T(v_2) \neq 3\), we may assume that every child of \(v_3\) with depth 1 that is different from \(v_2\) has degree two. Note that \(|C(v_3)| \geq 3\).

Assume first that \(|C(v_3)| \geq 4\), and let \(T'\) be the tree of order \(n'\) obtained from \(T - T_{v_3}\) by adding three new vertices \(x_1, x_2, x_3\) attached at \(v_3\). Note that \(n' = n - |C(v_3)| - |L(T_{v_3})| + 3, \ell(T') = \ell(T) - L(T_{v_3}) + 3, s(T') \leq s(T) - |C(v_3)| + 1\). Now, since \(v_3\) has three leaves in \(T'\), we must have \(f'(v_4) \geq 1\), and thus the function \(f\) defined by \(f(v_2) = 2, f(x) = 1\) for \(x \in \{v', v_3\} \cup (L(T_{v_3}) \backslash L(v_2))\), \(f(x) = 0\) for all \(x \in (C(v_3) \backslash \{v_2, v'_3\}) \cup L(v_2)\) and \(f(x) = f'(x)\) for otherwise, is a PIDF of \(T\). Hence \(\gamma_f^p(T) \leq \gamma_f^p(T') + |C(v_3)| + 2\), and by the induction hypothesis it follows that
\[
\gamma_f^p(T) \leq \gamma_f^p(T') + |C(v_3)| + 2
\leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{|C(v_3)| - 3|L(T_{v_3})| + 21}{5}.
\]

Moreover, since \(|L(T_{v_3})| \geq |C(v_3)| + 2\), we have \(\gamma_f^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{4C(v_3) + 15}{4C(v_3) + 15} < \frac{4n - \ell(T) + 2s(T) - 1}{5}\) because of \(|C(v_3)| \geq 4\). Next, we can assume that \(|C(v_3)| = 3\), that is \(T_{v_3}\) is isomorphic to \(H_1\) in Figure 1. In this case, let \(T'\) be the tree formed from \(T\) by removing all vertices of \(T_{v_3}\) except \(v_3\). Clearly \(v_3\) is a leaf in \(T'\). If \(f'(v_3) = 0\), then \(f(v_4) = 2\) and so the function \(f\) defined by \(f(v_3) = f(v') = f(u_1) = 1, f(v_2) = 2, f(x) = 0\) for all \(x \in L(v_2) \cup \{u_2\}\) and \(f(x) = f'(x)\) for otherwise is a PIDF of \(T\). If \(f'(v_3) = 1\), then we can extend \(f'\) to be a PIDF of \(T\) as above when \(f'(v_3) = 0\), except that we do not assign a 1 to \(v_3\). In either case, \(\gamma_f^p(T) \leq \gamma_f^p(T') + 5\). It follows from the induction hypothesis that
\[
\gamma_f^p(T) \leq \frac{4(n - 4 - |L(v_2)|) - \ell(T) + |L(v_2)| + 1 + 2s(T) - 5}{5} + 5
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]
Finally, if \(f'(v_3) = 2 \), then the function \(f \) defined by \(f(v_2) = f(u_2) = 2 \), \(f(x) = 0 \) for all \(x \in L(v_2) \cup \{ u_1, v' \} \) and \(f(x) = f'(x) \) for otherwise is a PIDF of \(T \). Using the induction hypothesis we obtain

\[
\gamma^p_I(T) \leq \gamma^p_I(T') + 4 \leq \frac{4(n - 4 - |L(v_2)|) - \ell(T') + |L(v_2)| + 1 + 2s(T) - 5 + 4}{5} < \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Figure 1. The trees.

Subcase 1.3. \(v_3 \) is not a support vertex. Suppose that \(v_3 \) has at least three children of degree at least 4, say \(a, b \) and \(c \). Let \(T' \) be the tree obtained from \(T \) by removing all leaves of \(a, b \) and \(c \). Note that \(n' = n - |L(a)| - |L(b)| - |L(c)| \), \(s(T') = s(T) - 2 \) and \(\ell(T') = \ell(T) - |L(a)| - |L(b)| - |L(c)| + 3 \). Clearly, since \(v_3 \) has three leaves in \(T' \), \(f'(v_3) \geq 1 \), and thus the function \(f \) defined by \(f(a) = f(b) = f(c) = 2 \), \(f(x) = 0 \) for all \(x \in L(a) \cup L(b) \cup L(c) \) and \(f(x) = f'(x) \) for all \(x \in V(T) \setminus (L[a] \cup L[b] \cup L[c]) \) is a PIDF of \(T \). By the induction hypothesis, it follows that

\[
\gamma^p_I(T) \leq \gamma^p_I(T') + 6 \\
\leq \frac{4(n - |L(a)| - |L(b)| - |L(c)|) - \ell(T) + |L(a)| + |L(b)| + |L(c)| - 3 + 2s(T) - 5 + 6}{5} < \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]
Hence, \(v_3 \) has at most two children of degree at least 4, say \(v_3 \) and \(u \) (if any).

Let \(T' \) be the tree of order \(n' \) obtained from \(T - T_{v_3} \) by adding three new vertices attached at \(v_4 \). Note that \(n' = n - |C(v_3)| - |L(T_{v_3})| + 2 \), \(s(T') \leq s(T) - |C(v_3)| + 1 \) and \(\ell(T') = \ell(T) - |L(T_{v_3})| + 3 \). Clearly, \(f'(v_4) \geq 1 \). Hence the function \(f \) defined by \(f(x) = 2 \) for \(x \in \{v_2, u\} \), \(f(x) = 1 \) for \(x \in (L(T_{v_3}) \cup \{v_3\}) \setminus (L(v_2) \cup L(u)) \), \(f(x) = 0 \) for \(x \in (C(v_3) \setminus \{v_2, u\}) \cup (L(v_2) \cup L(u)) \) and \(f(x) = f'(x) \) for otherwise is a PIDF of \(T \). By the induction hypothesis we obtain

\[
\gamma_p^p(T) \leq \gamma_f^p(T') + |C(v_3)| + 3
\]

\[
\leq \frac{4(n - |C(v_3)| - |L(T_{v_3})| + 2 - \ell(T) + |L(T_{v_3})| - 3 + 2s(T) - 2|C(v_3)| + 1}{5}
\]

\[
+ \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{|C(v_3)| - 3|\ell(T_{v_3})| + 22}{5}.
\]

Since \(|L(T_{v_3})| \geq |C(v_3)| + 2 \), we have \(\gamma_f^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{-4|C(v_3)| + 16}{5} \).

If \(|C(v_3)| \geq 4 \), then \(\gamma_f^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} \). Hence, \(2 \leq |C(v_3)| \leq 3 \). If \(|C(v_3)| = 3 \) and \(v_3 \) has two children of degree at least 4, then one can easily see that \(\gamma_f^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} \) (since \(|L(T_{v_3})| \geq |C(v_3)| + 4 \)). In the sequel, we can assume that \(T_{v_3} \) is isomorphic to one of \(H_2, H_3, H_4 \) depicted in Figure 1.

In that case, let \(T'' \) be the tree formed from \(T \) by removing all vertices of \(T_{v_3} \) except \(v_3 \). Clearly \(v_3 \) is a leaf in \(T'' \). Let \(f'' \) be a \(\gamma_f^p(T'') \) function. If \(f''(v_3) = 0 \), then \(f''(v_3) = 2 \) and so let \(f \) be a PIDF of \(T \) defined as follows: \(f(x) = f''(x) \) for all \(x \in V(T') \setminus \{v_3\} \) and \(f(v_3) = 1 \). Moreover, every child of \(v_3 \) of degree 2 is assigned a 0 and its unique leaf a 1; every child of \(v_3 \) of degree at least 4 is assigned a 2 and its leaves a 0. If \(f''(v_3) = 1 \), then \(f'' \) will be extended to a PIDF of \(T \) as above when \(f'(x) = 0 \), except we do not assign a 1 to \(v_3 \). Finally, if \(f''(v_3) = 2 \), then we use the following assignment for vertices of \(T_{v_3} \): assign a 2 to each child of \(v_3 \) and a 0 to each of their leaves. Now, if \(T_{v_3} = H_2 \), then in either case described above, we have \(\gamma_f^p(T) \leq \gamma_f^p(T'') + 4 \). By the induction hypothesis we obtain

\[
\gamma_p^p(T) \leq \gamma_p^p(T'') + 4 \leq \frac{4(n - 3 - |L(v_2)|) - \ell(T) + |L(v_2)| + 1 + 2s(T) - 3}{5} + 4
\]

\[
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

If \(T_{v_3} = H_3 \), then \(\gamma_f^p(T) \leq \gamma_f^p(T'') + 5 \), and by the induction hypothesis we obtain

\[
\gamma_p^p(T) \leq \gamma_p^p(T'') + 5 \leq \frac{4(n - 2 - |L(v_2)| - |L(u)|) - \ell(T) + |L(v_2)| + |L(u)| + 2s(T) - 3}{5} + 5
\]

\[
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]
Moreover, if $T_{v_3} = H_4$, then $\gamma_p^p(T) \leq \gamma_p^p(T''') + 6$, and by the induction hypothesis it follows that

$$\gamma_p^p(T) \leq \gamma_p^p(T''') + 6 \leq \frac{4(n - 5 - |L(v_2)|) - \ell(T) + 2 + |L(v_2)| + 2s(T) - 5 + 6}{5}$$

$$< \frac{4n - \ell(T) + 2s(T) - 1}{5}.$$

Before discussing Case 2, we will need the following claim.

Claim. Let T be a wounded spider of order n different from $DS_{2,1}$, with $s(T)$ support vertices and $\ell(T)$ leaves. Then we have the following.

(i) If $6s(T) - 2\ell(T) \geq 11$, then $\gamma_p^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 6}{5}$.

(ii) If $6s(T) - 2\ell(T) \leq 11$, then $\gamma_p^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 3}{5}$.

Proof. Let v be the center vertex of T.

(i) If $6s(T) - 2\ell(T) \geq 11$, then the function f defined by assigning a 1 to v and every leaf of T, and a 0 to remaining vertices of T, is a PIDF of T and so

$$\gamma_p^p(T) \leq \omega(f) = \ell(T) + 1 \leq \frac{4n - \ell(T) + 2s(T) - 6}{5}.$$

(ii) Let $t = |L(v)| - 1$. Clearly, $\ell(T) = s(T) + t$ and since $6s(T) - 2\ell(T) \leq 11$, then T is a double star and since T is not a $DS_{2,1}$, we can see that we have $4s(T) - 2t \leq 11$ and thus $t \geq 2s(T) - \frac{11}{2}$. Now if $s(T) = 2$, then T is a double star and since T is not a $DS_{2,1}$, we can see that $\gamma_p^p(T) \leq \frac{4n - \ell(T) + 2s(T) - 3}{5}$. Hence, let $s(T) \geq 3$. Then the function f defined by assigning a 2 to the support vertices of T and a 0 to remaining vertices of T is a PIDF of T of weight $2s(T)$. Since, $n = s(T) + \ell(T)$ and $\ell(T) = s(T) + t$, it follows that $\frac{4n - \ell(T) + 2s(T) - 3}{5} = \frac{9s(T) + 3t - 3}{5}$. Moreover, since $t \geq 2s(T) - \frac{11}{2}$ we obtain

$$\frac{9s(T) + 3t - 3}{5} \geq \frac{9s(T) + 6s(T) - \frac{33}{2} - 3}{5} = \frac{3s(T) - \frac{39}{10}}{5}.$$

Now, if $s(T) \geq 4$, then $3s(T) - \frac{39}{10} \geq 2s(T) \geq \gamma_p^p(T)$ and so the desired result follows. Thus we assume that $s(T) = 3$. If $t \geq 2s(T) - \frac{7}{2}$, then as above we have $\frac{9s(T) + 3t - 3}{5} \geq \frac{9s(T) - \frac{27}{2}}{5} \geq \frac{2s(T)}{5} \geq \gamma_p^p(T)$. Hence, let $t \leq 2s(T) - \frac{7}{2} = 2.5$. Note that in this case $\ell(T) \in \{3, 4, 5\}$. Then assigning a 1 to v and the leaves of T and a 0 to remaining vertices of T provides a PIDF of T of weight $\ell(T) + 1 \leq \frac{4n - \ell(T) + 2s(T) - 3}{5}$, which completes the proof of the claim.

We note from the proof of the claim that there exist PIDFs of T of weight at most $\frac{4|V(T_{v_3})| - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5}$ that assign to the center vertex a 1 or 2.
Now we are ready to examine the next case.

Case 2. \(\deg_T(v_2) = 2 \) or \(T_{v_3} = DS_{3,1} \). From Case 1 and since \(v_2 \) was chosen having a maximum degree, we conclude that \(T_{v_3} \) is a spider. Assume first that \(T_{v_3} \) is a healthy spider. If \(|C(v_3)| \ge 3 \), then let \(T' \) be the tree obtained by removing \(T_{v_3} \) and adding three new vertices attached at \(v_4 \). Note that \(n' = n - 2|C(v_3)| + 2 \), \(s(T') \le s(T) - |C(v_3)| + 1 \) and \(\ell(T') = \ell(T) - |C(v_3)| + 3 \). Clearly, \(f'(v_4) \ge 1 \) (since \(v_4 \) has three leaves in \(T' \)). Thus the function \(f \) defined by \(f(x) = 1 \) for \(x \in L(T_{v_3}) \cup \{v_3\} \), \(f(x) = 0 \) for every \(x \in C(v_3) \) and \(f(x) = f'(x) \) for \(x \in V(T) \setminus V(T_{v_3}) \) is a PIDF of \(T \). Hence \(\gamma_p^I(T) \le \gamma_p^I(T') + |C(v_3)| + 1 \), and by the induction hypothesis we obtain
\[
\gamma_p^I(T) \\
\le \gamma_p^I(T') + |C(v_3)| + 1 \\
\le \frac{4(n - 2|C(v_3)| + 2) - \ell(T) + |C(v_3)| - 3 + 2s(T) - 2|C(v_3)| + 1}{5} + |C(v_3)| + 1 \\
\le \frac{4n - \ell(T) + 2s(T) - 1 - 4|C(v_3)| + 12}{5} \le \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Now, assume that \(|C(v_3)| = 2 \), and let \(T' = T - T_{v_3} \). If \(f'(v_4) \ge 1 \), then the function \(f \) defined by \(f(x) = 1 \) for \(x \in L(T_{v_3}) \cup \{v_3\} \), \(f(x) = 0 \) for every \(x \in C(v_3) \) and \(f(x) = f'(x) \) for all \(x \in V(T) \setminus V(T_{v_3}) \) is a PIDF of \(T \). If \(f'(v_4) = 0 \), then the function \(f \) defined by \(f(x) = 1 \) for \(x \in V(T_{v_3}) \setminus \{v_3\} \), \(f(v_3) = 0 \) and \(f(x) = f'(x) \) for all \(x \in V(T) \setminus V(T_{v_3}) \) is a PIDF of \(T \). Thus the function \(f \) defined by \(f(x) = 1 \) for \(x \in L(T_{v_3}) \cup \{v_3\} \), \(f(x) = 0 \) for \(x \in C(v_3) \) and \(f(x) = f'(x) \) for all \(x \in V(T) \setminus V(T_{v_3}) \) is a PIDF of \(T \). Hence \(\gamma_p^I(T) \le \gamma_p^I(T') + 4 \) and by the induction hypothesis we obtain
\[
\gamma_p^I(T) \\
\le \gamma_p^I(T') + 4 \le \frac{4(n - 5) - \ell(T) + 2 + 2s(T) - 3}{5} + 4 \\
= \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Suppose now that \(T_{v_3} \) is a wounded spider \(S_{k,t} \). If \(T_{v_3} = DS_{2,1} \), then let \(T' = T - T_{v_3} \). Clearly we assume that \(n' \ge 2 \). If \(n' = 2 \), then \(\gamma_p^I(T') = 5 < \frac{4n - \ell(T) + 2s(T) - 1}{5} \). Hence we assume that \(n' \ge 3 \). If \(f'(v_4) \ge 1 \), then the function \(f \) defined by \(f(v_2) = f(v_3) = 2 \), \(f(x) = 0 \) for \(x \in L(T_{v_3}) \) and \(f(x) = f'(x) \) for \(x \in V(T) \setminus V(T_{v_3}) \) is a PIDF of \(T \). If \(f'(v_4) = 0 \), then the function \(f \) defined by \(f(v_1) = 2 \), \(f(v_2) = f(v_3) = 0 \) and \(f(x) = f'(x) \) for \(x \in V(T) \setminus V(T_{v_3}) \) is a PIDF of \(T \). In either case, \(\gamma_p^I(T) \le \gamma_p^I(T') + 4 \). If \(\deg_T(v_4) \ge 3 \), then \(s(T') = s(T) - 2 \) and \(\ell(T') = \ell(T) - 3 \) and by the induction hypothesis we obtain
\[
\gamma_p^I(T) \\
\le \gamma_p^I(T') + 4 \le \frac{4(n - 5) - \ell(T) + 3 + 2s(T) - 5}{5} + 4 \\
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]
A New Upper Bound for the Perfect Italian Domination Number ...11

If \(\text{deg}_T(v_4) = 2 \), then \(s(T') \leq s(T) - 1 \) and \(\ell(T') = \ell(T) - 2 \) and by the induction hypothesis we obtain

\[
\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}(T') + 4 \leq \frac{4(n - 5) - \ell(T) + 2 + 2s(T) - 3}{5} + 4
\]

\[
= \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

From now on we may assume that \(v_4 \) has no child \(x \) such that \(T_x = DS_{2,1} \).

Let \(s_1 \) be the number of children of \(v_4 \) that are leaves and for \(i \geq 2 \), let \(s_i \) be the number of children of \(v_4 \) of degree \(i \) whose children are all leaves. As we assumed at the beginning of the proof, \(T \) has no end support vertex with degree three, it follows that \(s_3 = 0 \). Let \(s_{\geq 4} \) be the number of children of \(v_4 \) of degree at least 4 having no grandchild. Thus

\[
s_{\geq 4} = \sum_{i \geq 4} s_i.
\]

Adopting our earlier notation, for each child \(v \) of \(v_4 \) with depth 2, let \(n_v \) denote the number of children in the subtree \(T_v \) of \(T \). Furthermore, let \(n^* \) denote the sum of the number of vertices in all such trees \(T_v \). Also, let \(s^* \) and \(\ell^* \) denote the sum of the number of support vertices and leaves vertices in all such trees \(T_v \), respectively. Note that every child of \(v_4 \) is one of the following four types: (1) a leaf; (2) a support vertex of degree 2; (3) a vertex with depth 2; (4) a support vertex of degree at least 4 whose children are all leaves. For ease of discussion, we sometimes refer to these children as Type-1, Type-2, Type-3, or Type-4, respectively. Moreover, let \(m \) be the number of leaves of all Type-4 children. Consider now the following subcases.

Subcase 2.1. \(s_1 + s_{\geq 4} \geq 3 \). Let \(T' = T - T_{v_3} \) be a tree of order \(n' \). We claim that \(f'(v_4) \geq 1 \). Suppose to the contrary that \(f'(v_4) = 0 \). This implies that at most two children of \(v_4 \) in \(T' \) are assigned positive values under \(f' \). But since every Type-1 and Type-4 child of \(v_4 \) must be assigned a positive value by \(f' \) when \(f'(v_4) = 0 \), this implies that \(s_1 + s_{\geq 4} \leq 2 \), a contradiction. Hence, \(f'(v_4) \geq 1 \).

Consequently, we can extend \(f' \) to a PIDF \(f \) by adding to it any PIDF of \(T_{v_3} \) of weight at most \(\frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} \) assigning a 1 or 2 to \(v_3 \) (as claimed above).

By the induction hypothesis we obtain

\[
\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}(T') + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5}
\]

\[
\leq \frac{4(n - n_{v_3}) - \ell(T) + \ell(T_{v_3}) + 2s(T) - 2s(T_{v_3}) - 1}{5} + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} < \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]
In the sequel, we may assume that $s_1 + s_{\geq 4} \leq 2$.

Subcase 2.2. $s_1 = 2$. Since $s_1 + s_{\geq 4} \leq 2$, we deduce that $s_{\geq 4} = 0$. Let F be the forest formed by the Type-3 children of v_4 and their descendants. We note any component of F is a wounded spider including T_{v_3} and different from $DS_{2,1}$. Let T' be the tree obtained from T by deleting all vertices in $V(F)$ and adding a new vertex a attached at v_4. Since v_4 has three leaf neighbors in T', we have $f'(v_4) \geq 1$. Let f be the PIDF of T defined as follows: $f(x) = f'(x)$ for all $x \in V(T) \setminus \{a\}$ and let the restriction of f to each component, say T_v, in F be any PIDF of that component of weight at most $\frac{4n - \ell(T_v) + 2s(T_v) - 3}{5}$. By our earlier observations, the total weight assigned to F is at most $\frac{4n^* - \ell^* + 2s^* - 3}{5}$. Now, by the induction hypothesis we obtain

$$
\gamma_f^p(T) \leq \gamma_f^p(T') + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
$$

$$
\leq \frac{4(n - n^*) + 1}{5} - \ell(T) + \ell^* - 1 + 2s(T) - 2s^* - 1 + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
$$

$$
\leq \frac{4n - \ell(T) + 2s(T) - 1}{5}.
$$

Hence, in the next we may assume that $s_1 \in \{0, 1\}$.

Subcase 2.3. $s_2 \geq 3$. Let T' be the tree of order n' obtained from $T - T_{v_4}$ by adding three new vertices x_1, x_2, x_3 attached at v_5. Note that $n' = n - n^* - 2s_2 - s_{\geq 4} - m + 2$, $\ell(T') = \ell(T) - \ell^* - s_1 - s_2 - m + 3$ and $s(T') \leq s(T) - s^* - s_1 - s_2 - s_{\geq 4} + 1$. Clearly, $f'(v_5) \geq 1$ (since v_5 has three leaves in T'). Let f be the PIDF of T defined by $f(x) = f'(x)$ for all $x \in V(T') \setminus \{x_1, x_2, x_3\}$ and let $f(v_4) = 1$. Then assign the weights to the descendants of v_4 in T as follows: assign a 1 to each Type-1 (leaf) child of v_4 (recall that $s_1 \in \{0, 1\}$); assign a 0 to each Type-2 child of v_4 and a 1 to its leaf neighbor; assign a 2 to each Type-4 child of v_4 and a 0 to each of its leaves. Finally, for each Type-3 child v, assign a PIDF to the subtree T_v rooted at v of weight at most $\frac{4n - \ell(T_v) + 2s(T_v) - 3}{5}$ so that $f(v) \geq 1$. By our earlier observations, the total weight assigned to all Type-3 children of v and their descendants is at most $\frac{4n^* - \ell^* + 2s^* - 3}{5}$. It follows from the induction hypothesis that

$$
\gamma_f^p(T) \leq \gamma_f^p(T') + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
$$

$$
\leq \frac{4n' - \ell(T') + 2s(T') - 1}{5} + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
$$

$$
\leq \frac{4(n - n^* - 2s_2 - m - s_{\geq 4} + 2) - \ell(T) + \ell^* + s_1 + s_2 + m - 3}{5}
$$

$$
+ \frac{2s(T) - 2s^* - 2s_1 - 2s_2 - 2s_{\geq 4} + 1}{5} + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
$$

$$
= \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{9 - 3m - 4s_2 + 4s_{\geq 4}}{5}.
$$
Using the fact that \(m \geq 3s \geq 4 \), it follows that \(\gamma_p^I(T) \leq \frac{4n-\ell(T)+2s(T)-1}{5} + \frac{9-4s_2-5s_4}{5} \).

Now since \(s_2 \geq 3 \), we deduce that \(\gamma_p^I(T) \leq \frac{4n-\ell(T)+2s(T)-1}{5} \).

By Subcase 2.3, we can assume that \(s_2 \leq 2 \).

Subcase 2.4. \(s_2 + s_\geq 4 \geq 1 \). Let \(T' \) be the tree of order \(n' \) obtained by deleting all vertices of \(T_{v_4} \) except \(v_4 \). Note that \(n' = n - n^* - s_1 - 2s_2 - s_\geq 4 - m \), \(s(T') \leq s(T) - s^* - s_1 - s_2 - s_\geq 4 + 1 \) and \(\ell(T') = \ell(T) - \ell^* - s_1 - s_2 - m + 1 \) (since \(v_4 \) is a leaf vertex in \(T' \)). First, let \(f'(v_4) = 2 \) and \(f \) be a PIDF of \(T \) defined by \(f(x) = f'(x) \) for all \(x \in V(T') \); and then assign the weights to the descendants of \(v_4 \) in \(T \) as follows: assign a 0 to each Type-1 (leaf) child of \(v_4 \), assign a 2 to each Type-2 child of \(v_4 \) and a 0 to its leaf, and assign a 2 to each Type-4 child of \(v_4 \) and a 0 to its leaves. Finally, for each Type-3 child \(v \), assign a PIDF to the subtree \(T_v \) rooted at \(v \). By our earlier observations, the total weight assigned to all Type-3 children of \(v \) and their descendants is at most \(\frac{4n^* - \ell^* + 2s^* - 3}{5} \). By the induction hypothesis it follows that

\[
\gamma_p^I(T) \leq \gamma_p^I(T') + \frac{4n^* - \ell^* + 2s^* - 3}{5} + 2s_2 + 2s_\geq 4
\]

\[
\leq \frac{4n' - \ell(T') + 2s(T') - 1}{5} + \frac{4n^* - \ell^* + 2s^* - 3}{5} + 2s_2 + 2s_\geq 4
\]

\[
\leq \frac{4(n - n^* - s_1 - 2s_2 - m - s_\geq 4) - \ell(T) + \ell^* + s_1 + s_2 + m - 1}{5}
\]

\[
+ \frac{2s(T) - 2s^* - 2s_1 - 2s_2 - 2s_\geq 4 + 1}{5} + \frac{4n^* - \ell^* + 2s^* - 3}{5}
\]

\[
+ 2s_2 + 2s_\geq 4
\]

Now since \(m \geq 3s_\geq 4 \) and \(s_2 \leq 2 \), we get

\[
\gamma_p^I(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{-5s_1 + s_2 - 5s_\geq 4 - 2}{5} < \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Suppose now that \(f'(v_4) \in \{0, 1\} \), and let \(f \) be a PIDF of \(T \) defined by \(f(x) = f'(x) \) for all \(x \in V(T') \) and let \(f(v_4) = 1 \). Then assign the weights to the descendants of \(v_4 \) in \(T \) as follows: assign a 1 to each Type-1 (leaf) child of \(v_4 \); assign a 0 to each Type-2 child of \(v_4 \) and a 1 to its leaf neighbor and assign a 2 to each Type-4 child of \(v_4 \) and 0 to its leaves. Finally, for each Type-3 child \(v \), assign a PIDF of weight at most \(\frac{4n - \ell(T_v) + 2s(T_v) - 3}{5} \) to vertices of \(T_v \) rooted at \(v \) so that \(f(v) \geq 1 \). By our earlier observations, the total weight assigned to all Type-3 children of \(v \) and their descendants is at most \(\frac{4n^* - \ell^* + 2s^* - 3}{5} \). By the induction hypothesis we obtain
\[
\gamma_p(T) \leq \gamma_p(T') + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
\]
\[
\leq \frac{4n' - \ell(T') + 4n^* - \ell^* - 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
\]
\[
\leq \frac{4(n - n^* - s_1 - 2s_2 - m - s_{\geq 4}) - \ell(T) + \ell^* + s_1 + s_2 + m - 1}{5}
+ \frac{2s(T) - 2s^* - 2s_1 - 2s_2 - 2s_{\geq 4} + 1}{5} + \frac{4n^* - \ell^* + 2s^* - 3}{5} + s_1 + s_2 + 2s_{\geq 4} + 1
\]
\[
\leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{-4s_2 - 3m + 4s_{\geq 4} + 3}{5}.
\]

Now since \(m \geq 3s_{\geq 4}\), it follows that
\[
\gamma_p(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + \frac{-4s_2 - 5s_{\geq 4} + 3}{5},
\]
and since \(s_2 + s_{\geq 4} \geq 1\), the result follows.

Subcase 2.5. \(s_2 + s_{\geq 4} = 0\). Recall that \(s_1 \in \{0, 1\}\). Let \(v'\) be the leaf neighbor of \(v_4\) (if any). First, let \(v_4\) has at least two children of Type-3. Let \(T'\) be the tree of order \(n'\) obtained by deleting all vertices of \(T_{v_4}\) except \(v_4\). Note that \(n' = n - n^* - s_1\), \(s(T') \leq s(T) - s^* - s_1 + 1\) and \(\ell(T') = \ell(T) - \ell^* + 1\) (since \(v_4\) is a leaf vertex in \(T')\). We also note that if \(f'(v_4) = 0\), then since \(v_4\) is a leaf in \(T'\), we must have \(f'(v_4) = 2\). Now, we define a PIDF \(f\) of \(T\) by \(f(x) = f'(x)\) for all \(x \in V(T') \setminus \{v_4\}\). Moreover, \(f(v') = 1\), \(f(v_4) = 1\) if \(f'(v_4) = 0\) and \(f(v_4) = f'(v_4)\) if \(f'(v_4) \geq 1\). Also, for each other child \(v\) of \(v_4\), assign a PIDF to the subtree \(T_v\) of weight at most \(\frac{4n - \ell(T_v) + 2s(T_v) - 1}{5}\). Since there are at least two Type-3 children of \(v_4\), the total weight assigned to such subtree \(T_v\) is \(\frac{4n^* - \ell^* + 2s^* - 2}{5} + s_1 + 1\). Hence in either case, \(\gamma_p(T) \leq \gamma_p(T') + \frac{4n^* - \ell^* + 2s^* - 6}{5} + s_1 + 1\). Using the induction hypothesis we obtain
\[
\gamma_p(T) \leq \gamma_p(T') + \frac{4n^* - \ell^* + 2s^* - 6}{5} + s_1 + 1
\]
\[
\leq \frac{4n' - \ell(T') + 4n^* - \ell^* - 2s^* - 6}{5} + s_1 + 1
\]
\[
\leq \frac{4(n - n^* - s_1) - \ell(T) + \ell^* + s_1 - 1 + 2s(T) - 2s^* - 2s_1 + 1}{5}
+ \frac{4n^* - \ell^* + 2s^* - 6}{5} + s_1 + 1 \leq \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

In the sequel, \(v_3\) is the only child of \(v_4\) of Type-3. We distinguish the following.

(i) \(T_{v_3} = DS_{1,3}\). Consider two situations depending on whether \(s_1 = 0\) or \(s_1 = 1\).

(a) \(s_1 = 0\). Hence \(\deg_T(v_4) = 2\). Let \(T' = T - T_{v_4}\). Clearly, \(n' \geq 1\). If \(n' = 1\), then \(T\) is a wounded spider and by the claim the result follows, and if \(n' = 2\), then
A New Upper Bound for the Perfect Italian Domination Number ...15

one can easily see that \(\gamma_p^f(T) = 6 < \frac{4n^t - \ell(T) + 2s(T) - 1}{5} = 7.2 \). So let \(n' \geq 3 \). Note that \(n' = n - 7 \), \(\ell(T') \geq \ell(T) - 4 \) and \(s(T') \leq s(T) - 1 \). Any \(\gamma_p^f(T') \)-function can be extended to a PIDF of \(T \) by assigning a 2 to \(v_2, v_3 \) and a 0 to remaining vertices of \(T_{v_4} \) except \(v_4 \) which will be assigned a 0 if \(f'(v_4) = 0 \) and a 1 if \(f'(v_4) \geq 1 \). In either case, \(\gamma_p^f(T) \leq \gamma_p^f(T') + 5 \). By the induction hypothesis we obtain

\[
\gamma_p^f(T) \leq \frac{4n - \ell(T) + 2s(T) - 1}{5} + 5 \leq \frac{4(n - 7) - \ell(T) + 4 + 2s(T) - 3}{5} + 5
\]

(b) \(s_1 = 1 \). Let \(T' \) be the tree obtained from \(T \) by removing all vertices \(T_{v_3} \) except \(v_3 \). If \(f'(v_3) = 0 \), then \(f'(v_4) = 2 \), and so \(f' \) can be extended to a PIDF of \(T \) by assigning a 2 to \(v_2, v_3 \) and a 0 to remaining vertices of \(T_{v_4} \). Hence \(\gamma_p^f(T) \leq \gamma_p^f(T') + 4 \). If \(f'(v_3) = 2 \), then \(f'(v_4) = 0 \) and so the other leaf neighbor of \(v_4 \) is assigned a 1, which is a contradiction. Hence, \(f'(v_3) = 1 \). Now, if \(|L(v_3)| = 1 \), then we extend \(f' \) to a PIDF of \(T \) by assigning a 2 to \(v_2, v_3 \) and a 0 to remaining vertices of \(T_{v_4} \). If \(|L(v_3)| = 3 \), then we extend \(f' \) to a PIDF of \(T \) by assigning a 1 to \(L(T_{v_3}) \) and a 0 to \(v_2 \). In either case, \(\gamma_p^f(T) \leq \gamma_p^f(T') + 4 \). By the induction hypothesis we obtain

\[
\gamma_p^f(T) \leq \frac{4n' - \ell(T') + s(T') - 1}{5} + 4 \leq \frac{4(n - 5) - \ell(T) + 3 + 2s(T) - 5}{5} + 4
\]

(ii) \(T_{v_3} = S_{k, \ell} \neq DS_{3,1} \). We recall that \(T_{v_3} \) is different from \(DS_{2,1} \). First let \(6s(T_{v_3}) - 2l(T_{v_3}) \geq 11 \). By our Claim, \(\gamma_p^f(T_{v_3}) \leq \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 6}{5} \). Let \(T' \) be the tree obtained from \(T \) by removing all vertices of \(T_{v_4} \) except \(v_4 \). Note that \(n' \geq 2 \). Moreover, if \(n' = 2 \), then one can see that \(\gamma_p^f(T) \leq \gamma_p^f(T_{v_3}) + 2 < \frac{4n - \ell(T) + 2s(T) - 1}{5} \). Hence let \(n' \geq 3 \). Note that \(n' = n - n_{v_3} - s_1, \ell(T') = \ell(T) - s_3(T_{v_3}) - s_1 + 1 \) and \(s(T') \leq s(T) - s_3(T_{v_3}) - s_1 + 1 \). Then any \(\gamma_p^f(T') \)-function \(f' \) can be extended to a PIDF of \(T \) by adding to it a PIDF of \(T_{v_3} \) of weight \(\frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 6}{5} \) that assigns a 1 to \(v_3 \). Moreover, the leaf neighbor of \(v_4 \) (if any) is assigned a 1, while \(v_4 \) will be assigned a 1 if \(f'(v_4) = 0 \) (note that in that case \(f'(v_3) = 2 \) or \(v_4 \) will keep the same assignment under \(f' \) if \(f'(v_4) \geq 1 \). In either case, \(\gamma_p^f(T) \leq \gamma_p^f(T') + \gamma_p^f(T_{v_3}) + s_1 + 1 \). Using the induction, we obtain

\[
\gamma_p^f(T) \leq \frac{4n' - \ell(T') + s(T') - 1}{5} + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 6}{5} + s_1 + 1
\]

\[
= \frac{4(n - n_{v_3} - s_1) - \ell(T) + \ell(T_{v_3}) + s_1 - 1 + 2s(T) - 2s(T_{v_3}) - 2s_1 + 1}{5} + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 6}{5} + s_1 + 1 = \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]
Therefore, we can now assume that $6s(T_{v_3}) - 2\ell(T_{v_3}) \leq 11$. Recall that (by the proof of the Claim) there exists PIDF, say g, of T_{v_3} of weight at most \[rac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5}\] assigning a 2 to v_3. We now consider two situations depending on whether $s_1 = 0$ or $s_1 = 1$.

(a) $s_1 = 0$. Then $\deg_T(v_4) = 2$. Let $T' = T - T_{v_4}$. If $n' = 1$, then T is a wounded spider and by the claim the result follows, and if $n' = 2$, then one can easily see that g can be extended to a PIDF of T by assigning a 2 to v_5 and a 0 to both v_4 and v_5, and thus $\gamma_f^p(T) \leq \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} + 2 \leq \frac{4n - \ell(T) + 2s(T) - 1}{5}$. So let $n' \geq 3$. In this case, any $\gamma_f^p(T')$-function can be extended to a PIDF of T by adding to it the PIDF g of T_{v_3}. Moreover, v_4 will be assigned a 0 if $f'(v_5) = 0$ and a 1 if $f'(v_5) \geq 1$. In either case, $\gamma_f^p(T) \leq \gamma_f^p(T') + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} + 1$. Using the fact that $n' = n - n_{v_3} - 1$, $\ell(T') \geq \ell(T) - \ell(T_{v_3})$, $s(T') \leq s(T) - s(T_{v_3}) + 1$, it follows from the induction hypothesis that

\[
\gamma_f^p(T) \leq \frac{4n' - \ell(T') + s(T') - 1}{5} + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} + 1
\leq \frac{4(n - n_{v_3} - 1) - \ell(T) + \ell(T_{v_3}) + 2s(T) - 2s(T_{v_3}) + 1}{5}
+ \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} + 1 = \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

(b) $s_1 = 1$. Assume first that v_3 has at least four leaves, and let $T' = T \setminus \{w, v_1, v_2\}$, where $w \in \mathcal{L}(v_3)$. Since v_3 has at least three leaves we have $f'(v_3) \geq 1$. If $f'(v_3) = 2$, then f' is extended to a PIDF of T' by assigning a 2 to v_2 and a 0 to w, v_1. If $f'(v_3) = 1$, then f' to a PIDF of T by assigning a 1 to v_1, w and 0 to v_2. In either case, $\gamma_f^p(T) \leq \gamma_f^p(T') + 2$. By the induction hypothesis we get

\[
\gamma_f^p(T) \leq \frac{4n' - \ell(T') + s(T') - 1}{5} + 2 \leq \frac{4(n - 3) - \ell(T) + 2 + 2s(T) - 3}{5} + 2
< \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

Hence, we can assume that v_3 has at most three leaves and thus $\ell(T_{v_3}) \leq s(T_{v_3}) + 2$. Let T' be the tree obtained from T by removing all vertices of T_{v_3} except v_3. Then $n' = n - n_{v_3} + 1$, $\ell(T') = \ell(T) - \ell(T_{v_3}) + 1$ and $s(T') = s(T) - s(T_{v_3})$. If $f'(v_3) = 0$, then $f'(v_4) = 2$, and f' can be extended to a PIDF of T by adding to it the PIDF g of T_{v_3}, where v_3 is reassigned $g(v_3)$ instead of $f'(v_3)$. Applying our induction hypothesis, we obtain
A New Upper Bound for the Perfect Italian Domination Number ...

\[
\gamma_p^I(T) \leq \frac{4n' - \ell(T') + s(T') - 1}{5} + \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5} \\
\leq \frac{4(n - n_{v_3} + 1) - \ell(T) + \ell(T_{v_3}) - 1 + 2s(T) - 2s(T_{v_3}) - 1}{5} \\
+ \frac{4n_{v_3} - \ell(T_{v_3}) + 2s(T_{v_3}) - 3}{5}
\]

If \(f'(v_3) = 2 \), then \(f'(v_4) = 0 \) and the other leaf neighbor of \(v_4 \) in \(T' \) is assigned a 1, which provides a contradiction. Hence let \(f'(v_3) = 1 \). Then we extend \(f' \) to a PIDF of \(T \) by assigning a 1 to all leaves vertices of \(T_{v_3} \) and a 0 to remaining vertices of \(T_{v_3} \) but \(v_3 \). Using the fact that \(\ell(T_{v_3}) \leq s(T_{v_3}) + 2 \), \(n_{v_3} = \ell(T_{v_3}) + s(T_{v_3}) \) and the induction hypothesis, we obtain

\[
\gamma_p^I(T) \leq \frac{4n' - \ell(T') + s(T') - 1}{5} + \frac{4n - \ell(T) + 2s(T) - 1}{5}.
\]

This completes the proof. \(\blacksquare \)

References

Received 4 September 2019
Revised 8 April 2020
Accepted 10 April 2020