A CLASSIFICATION OF CACTUS GRAPHS
ACCORDING TO THEIR DOMINATION NUMBER

Majid Hajian

Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: majid_hajian2000@yahoo.com

Michael A. Henning

Department of Mathematics and Applied Mathematics
University of Johannesburg
Johannesburg, South Africa
e-mail: mahenning@uj.ac.za

AND

Nader Jafari Rad

Department of Mathematics
Shahed University, Tehran, Iran
e-mail: n.jafarirad@gmail.com

Abstract

A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721–738] that if G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G) \geq \left\lceil \frac{n - \ell + 2 - 2k}{3} \right\rceil$. As a consequence of the above bound, $\gamma(G) = \frac{n - \ell + 2(1 - k) + m}{3}$ for some integer $m \geq 0$. In this paper, we characterize the class of cactus graphs achieving equality here, thereby providing a classification of all cactus graphs according to their domination number.

Keywords: domination number, lower bounds, cycles, cactus graphs.

2010 Mathematics Subject Classification: 05C69.

Research supported in part by the University of Johannesburg.
1. Introduction

A dominating set of a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S, where two vertices are neighbors in G if they are adjacent. The minimum cardinality of a dominating set is the domination number of G, denoted by $\gamma(G)$. A dominating set of cardinality $\gamma(G)$ is called a γ-set of G. As remarked in [5], the notion of domination and its variations in graphs has been studied a great deal; a rough estimate says that it occurs in more than 6000 papers to date. For fundamentals of domination theory in graphs we refer the reader to the so-called domination books by Haynes, Hedetniemi, and Slater [6, 7]. An updated glossary of domination parameters can be found in [4].

Two vertices u and v in a graph G are connected if there exists a (u,v)-path in G. The graph G is connected if every two vertices in G are connected. A block of G is a maximal connected subgraph of G which has no cut-vertex of its own. A cactus is a connected graph in which every edge belongs to at most one cycle. Equivalently, a (nontrivial) cactus is a connected graph in which every block is an edge or a cycle. The distance between two vertices u and v in a connected graph G is the minimum length of a (u,v)-path in G. The diameter, $\text{diam}(G)$, of G is the maximum distance among pairs of vertices in G.

For notation and graph theory terminology we generally follow [8]. In particular, the order of a graph G with vertex set $V(G)$ and edge set $E(G)$ is given by $n(G) = |V(G)|$ and its size by $m(G) = |E(G)|$. A neighbor of a vertex v in G is a vertex adjacent to v, and the open neighborhood of v is the set of neighbors of v, denoted $N_G(v)$. The closed neighborhood of v is the set $N_G[v] = N_G(v) \cup \{v\}$. The degree of a vertex v in G is given by $d_G(v) = |N_G(v)|$.

For a set S of vertices in a graph G, the subgraph induced by S is denoted by $G[S]$. Further, the subgraph obtained from G by deleting all vertices in S and all edges incident with vertices in S is denoted by $G - S$. If $S = \{v\}$, we simply denote $G - \{v\}$ by $G - v$. A leaf of a graph G is a vertex of degree 1 in G, and its unique neighbor is called a support vertex. The set of all leaves of G is denoted by $L(G)$, and we let $\ell(G) = |L(G)|$ be the number of leaves in G. We denote the set of support vertices of G by $S(G)$. We call a vertex of degree at least 2 a non-leaf.

Following our notation in [5], we denote the path and cycle on n vertices by P_n and C_n, respectively. A complete graph on n vertices is denoted by K_n, while a complete bipartite graph with partite sets of size n and m is denoted by $K_{n,m}$. A star is the graph $K_{1,k}$, where $k \geq 1$. Further if $k > 1$, the vertex of degree k is called the center vertex of the star, while if $k = 1$, arbitrarily designate either vertex of P_2 as the center. A double star is a tree with exactly two (adjacent) non-leaf vertices.

A rooted tree T distinguishes one vertex r called the root. For each vertex
A Classification of Cactus Graphs According to ...

Let \(v \neq r \) of \(T \), the parent of \(v \) is the neighbor of \(v \) on the unique \((r,v)\)-path, while a child of \(v \) is any other neighbor of \(v \). A descendant of \(v \) is a vertex \(u \neq v \) such that the unique \((r,u)\)-path contains \(v \). In particular, every child of \(v \) is a descendant of \(v \). We let \(D(v) \) denote the set of descendants of \(v \), and we define \(D[v] = D(v) \cup \{v\} \). The maximal subtree at \(v \) is the subtree of \(T \) induced by \(D[v] \), and is denoted by \(T_v \). We use the standard notation \([k] = \{1, \ldots, k\}\).

2. Main Result

Our aim in this paper is to provide a classification of all cactus graphs according to their domination number. For this purpose, we shall use a result of the authors in [5] (which we present in Section 4) that establishes a lower bound on the domination number of a graph in terms of its order, number of vertices of degree 1, and number of cycles. From this result, we prove our desired characterization below, where \(G_{m,k} \) is a family of graphs defined in Section 3.

Theorem 1. Let \(m \geq 0 \) be an integer. If \(G \) is a cactus graph of order \(n \geq 2 \) with \(k \geq 0 \) cycles and \(\ell \) leaves, then \(\gamma(G) = \frac{1}{3}(n - \ell + 2(1 - k) + m) \), if and only if \(G \in G_{m,k} \).

We proceed as follows. In Section 3 we define the families \(G_{m,k} \) of graphs for each integer \(k \geq 0 \) and \(m \geq 0 \). Known results on the domination number are given in Section 4. In Section 5 we present a proof of our main result.

3. The Families \(G_{m,k} \) for \(m \geq 0 \) and \(k \geq 0 \)

In this section, we define the families \(G_{m,k} \) of graphs for each integer \(k \geq 0 \) and \(m \geq 0 \). The families \(G_{0}^{0}, G_{0}^{1}, G_{0}^{2}, T_{0}^{1,1}, T_{0}^{2,1} \) of graphs were defined by the authors in [5]. For completeness, we include these definitions in Sections 3.1 and 3.2. We first define the families \(G_{k}^{0}, G_{k}^{1} \) and \(G_{k}^{2} \) of graphs in the special case when \(k = 0 \).

3.1. The families \(G_{0}^{0}, G_{0}^{1} \) and \(G_{0}^{2} \)

Hajian et al. [5] defined the class of trees \(G_{0}^{0}, G_{0}^{1} \) and \(G_{0}^{2} \) as follows.

- Let \(G_{0}^{0} \) be the class of all trees \(T \) that can be obtained from a sequence \(T_1, \ldots, T_k \) of trees where \(k \geq 1 \) such that \(T_1 \) is a star with at least three vertices, \(T = T_k \), and, if \(k \geq 2 \), then the tree \(T_{i+1} \) can be obtained from the tree \(T_i \) by applying Operation \(\mathcal{O} \) defined below for all \(i \in [k - 1] \).

Operation \(\mathcal{O} \). Add a vertex disjoint copy of a star \(Q_i \) with at least three vertices to the tree \(T_i \) and add an edge joining a leaf of \(Q_i \) and a leaf of \(T_i \).
Let $T_{0}^{1,1}$ be the class of all trees T that can be obtained from a tree $T' \in \mathcal{G}_{0}^{0}$ by adding a vertex disjoint copy of a star with at least three vertices and adding an edge from a leaf of the added star to a non-leaf in T'. Now, let \mathcal{G}_{0}^{1} be the class of all trees T that can be obtained from a sequence T_{1}, \ldots, T_{k} of trees where $k \geq 1$ such that $T_{1} \in T_{0}^{1,1} \cup \{P_{2}\}$, $T = T_{k}$, and, if $k \geq 2$, then the tree T_{i+1} can be obtained from the tree T_{i} by applying Operation \mathcal{O} for all $i \in [k-1]$.

Let $T_{0}^{2,1}$ be the class of all trees T that can be obtained from a tree $T' \in \mathcal{G}_{0}^{0}$ by adding a vertex disjoint copy of a star (with at least two vertices) and adding an edge from the center of the added star to a non-leaf in T'. Let $T_{0}^{2,2}$ be the class of all trees T that can be obtained from a tree $T' \in \mathcal{G}_{0}^{1}$ by adding a vertex disjoint copy of a star with at least three vertices and adding an edge from a leaf of the added star to a non-leaf in T'. Now, let \mathcal{G}_{0}^{2} be the class of all trees T that can be obtained from a sequence T_{1}, \ldots, T_{k} of trees, where $k \geq 1$, such that $T_{1} \in T_{0}^{2,1} \cup T_{0}^{2,2} \cup \{P_{4}\}$, $T = T_{k}$, and, if $k \geq 2$, then the tree T_{i+1} can be obtained from the tree T_{i} by applying Operation \mathcal{O} for all $i \in [k-1]$.

3.2. The families $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}$ and \mathcal{G}_{k}^{2} when $k \geq 1$

For $k \geq 1$, Hajian et al. [5] defined the families of graphs $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}$ and \mathcal{G}_{k}^{2} as follows.

- For $k \geq 1$, they recursively defined the family \mathcal{G}_{i}^{0} of graphs for each $i \in [k]$ by the following procedure.

Procedure A. For $i \in [k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{0} if it contains an edge $e = xy$ such that the graph $G_{i} - e$ belongs to the family \mathcal{G}_{i-1}^{0} and the vertices x and y are leaves in $G_{i} - e$ that are connected by a unique path in $G_{i} - e$.

- For $k \geq 1$, they recursively defined the family \mathcal{G}_{i}^{1} of graphs for each $i \in [k]$ by the following two procedures.

Procedure B. For $i \in [k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{1} if it contains an edge $e = xy$ such that the graph $G_{i} - e$ belongs to the family \mathcal{G}_{i-1}^{1} and the vertices x and y are leaves in $G_{i} - e$ that are connected by a unique path in $G_{i} - e$.

Procedure C. For $i \in [k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{1} if it contains an edge $e = xy$ such that the graph $G_{i} - e$ belongs to the family \mathcal{G}_{i-1}^{2} and the vertices x and y are connected by a unique path in $G_{i} - e$. Further, exactly one of x and y is a leaf in $G_{i} - e$.

- For $k \geq 1$, they recursively defined the family \mathcal{G}_{i}^{2} of graphs for each $i \in [k]$ by the following four procedures.

Procedure D. For $i \in [k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{2} if it contains an edge $e = xy$ such that the graph $G_{i} - e$ belongs to the family \mathcal{G}_{i-1}^{2} and the vertices x and y are leaves in $G_{i} - e$ that are connected by a unique path in $G_{i} - e$.

A Classification of Cactus Graphs According to ...

Procedure E. For $i \in [k]$, a graph G_i belongs to the family G_i^2 if it contains an edge $e = xy$ such that the graph $G_i - e$ belongs to the family G_i^1 and the vertices x and y are connected by a unique path in $G_i - e$. Further, exactly one of x and y is a leaf in $G_i - e$.

Procedure F. For $i \in [k]$, a graph G_i belongs to the family G_i^2 if it contains an edge $e = xy$ such that the graph $G_i - e$ belongs to the family G_i^1 and the vertices x and y are connected by a unique path in $G_i - e$. Further, both x and y are non-leaves in $G_i - e$.

Procedure G. For $2 \leq i \in [k]$, a graph G_i belongs to the family G_i^2 if it contains an edge $e = xy$ such that the graph $G_i - e$ belongs to the family G_i^1 and the vertices x and y are connected by exactly two paths in $G_i - e$. Further, both x and y are leaves in $G_i - e$.

3.3. The family G_0^m when $m \geq 3$

In this section, we define a family of graphs G_0^m for each integer $m \geq 3$ as follows. We call a non-leaf x in a tree T a **special vertex** if $\gamma(T - x) \geq \gamma(T)$. For $m \geq 3$, we first recursively define the class $T_0^{m,1}$ and $T_0^{m,2}$ of trees as follows.

- Let $T_0^{m,1}$ be the class of all trees T that can be obtained from a tree $T' \in G_0^{m-2}$ by adding a vertex disjoint copy of a star Q and joining the center of Q to a special vertex in T'.
- Let $T_0^{m,2}$ be the class of all trees T that can be obtained from a tree $T' \in G_0^{m-1}$ by adding a vertex disjoint copy of a star Q with at least three vertices and joining a leaf of Q to a non-leaf in T'.

For $m \geq 3$, we next recursively define the family G_0^m of graphs constructed from the families G_0^{m-1} and G_0^{m-2} as follows.

- Let G_0^m be the class of all trees T that can be obtained from a sequence T_1, \ldots, T_q of trees, where $q \geq 1$ and where the tree $T_1 \in T_0^{m,1} \cup T_0^{m,2}$ and the tree $T = T_q$. Further, if $q \geq 2$, then for each $i \in [q] \setminus \{1\}$, the tree T_i can be obtained from the tree T_{i-1} by applying the Operation O defined in Section 3.1.

Operation O. Add a vertex disjoint copy of a star Q_i with at least three vertices to the tree T_i and add an edge joining a leaf of Q_i and a leaf of T_i.

3.4. The family G_k^m when $m \geq 3$ and $k \geq 1$

For $m \geq 3$ and $k \geq 1$, we construct the family G_k^m from G_{k-1}^{m-2}, G_{k-1}^{m-1}, and G_k^{m-1}, recursively, as follows.

Procedure H. For $i \in [k]$, a graph G_i belongs to the family G_i^m if it contains an edge $e = xy$ such that the graph $G_i - e$ belongs to the family G_{k-1}^{m-1} and the vertices x and y are connected by a unique path in $G_i - e$ and $\gamma(G_i) = \gamma(G_i - e)$. Further, both x and y are leaves in $G_i - e$.
Procedure I. For \(i \in [k] \), a graph \(G_i \) belongs to the family \(G^m_i \) if it contains an edge \(e = xy \) such that the graph \(G_i - e \) belongs to the family \(G^m_{i-1} \) and the vertices \(x \) and \(y \) are connected by a unique path in \(G_i - e \) and \(\gamma(G_i) = \gamma(G_i - e) \). Further, exactly one of \(x \) and \(y \) is a leaf in \(G_i - e \).

Procedure J. For \(i \in [k] \), a graph \(G_i \) belongs to the family \(G^m_i \) if it contains an edge \(e = xy \) such that the graph \(G_i - e \) belongs to the family \(G^m_{i-2} \) and the vertices \(x \) and \(y \) are connected by a unique path in \(G_i - e \) and \(\gamma(G_i) = \gamma(G_i - e) \). Further, both \(x \) and \(y \) are non-leaves in \(G_i - e \).

4. Known Results

In this section, we present some preliminary observations and known results. We begin with the following properties of graphs that belong to the families \(G^0_k \), \(G^1_k \) and \(G^2_k \) for \(k \geq 0 \).

Observation 1. The following properties hold in a graph \(G \in G^0_k \cup G^1_k \cup G^2_k \), where \(k \geq 0 \).

(a) The graph \(G \) contains exactly \(k \) cycles.

(b) The graph \(G \in G^0_k \cup G^1_k \) is a cactus graph.

We shall also need the following elementary property of a dominating set in a graph.

Observation 2. If \(G \) is a connected graph of order at least 3, then there exists a \(\gamma \)-set of \(G \) that contains no leaf of \(G \).

The following lemma is established in [5].

Lemma 2 [5]. If \(G \) is a connected graph and \(C \) is an arbitrary cycle in \(G \), then there is an edge \(e \) of \(C \) such that \(\gamma(G - e) = \gamma(G) \).

Several authors obtained bounds on the domination number in terms of different variants of graphs, see for example [1, 2, 3, 6, 9]. Let \(R \) be the family of all trees in which the distance between any two distinct leaves is congruent to 2 modulo 3. Lemańska [9] established the following lower bound on the domination number of a tree in terms of its order and number of leaves.

Theorem 3 [9]. If \(T \) is a tree of order \(n \geq 2 \) with \(\ell \) leaves, then \(\gamma(T) \geq (n - \ell + 2)/3 \), with equality if and only if \(T \in R \).

Hajian et al. [5] showed that the family \(R \) is precisely the family \(G^0_0 \); that is, \(R = G^0_0 \).

As a consequence of Theorem 3, we have the following result.
Corollary 4 [9]. If T is a tree of order $n \geq 2$ with ℓ leaves, then $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$ for some integer $m \geq 0$.

Hajian et al. [5] strengthened the result in Theorem 3 as follows.

Theorem 5 [5]. If T is a tree of order $n \geq 2$ with ℓ leaves, then the following holds.

(a) $\gamma(T) \geq \frac{1}{3}(n - \ell + 2)$, with equality if and only if $T \in G^0_0$.
(b) $\gamma(T) = \frac{1}{3}(n - \ell + 3)$ if and only if $T \in G^1_0$.
(c) $\gamma(T) = \frac{1}{3}(n - \ell + 4)$ if and only if $T \in G^2_0$.

The result of Theorem 5 was generalized in [5] to connected graphs as follows.

Theorem 6 [5]. If G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then the following holds.

(a) $\gamma(G) \geq \frac{1}{3}(n - \ell + 2(1 - k))$, with equality if and only if $G \in G^0_k$.
(b) $\gamma(G) = \frac{1}{3}(n - \ell + 3 - 2k)$ if and only if $G \in G^1_k$.
(c) $\gamma(G) = \frac{1}{3}(n - \ell + 4 - 2k)$ if and only if $G \in G^2_k$.

As a consequence of Theorem 6(a), we have the following.

Corollary 7 [5]. If G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G) = \frac{1}{3}(n - \ell + 2(1 - k) + m)$ for some integer $m \geq 0$.

5. Proof of Main Result

In this section, we present a proof of our main result, namely Theorem 1. For this purpose, we first prove Theorem 1 in the special case when $k = 0$, that is, when the cactus is a tree.

Theorem 8. Let $m \geq 0$ be an integer. If T is a tree of order $n \geq 2$ with ℓ leaves, then $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$ if and only if $T \in G^m_0$.

Proof. Let T be a tree of order $n \geq 2$ with ℓ leaves. We proceed by induction on $m \geq 0$, namely first-induction, to show that $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$, if and only if $T \in G^m_0$. For the base step of the first-induction let $m = 0$. If $m = 0$, then the result follows by Theorem 5(a). If $m = 1$, then the result follows by Theorem 5(b). If $m = 2$, then the result follows by Theorem 5(c). This establishes the base step of the induction. Let $m \geq 3$ and assume that the result holds for all trees T_0 of order n_0 with ℓ_0 leaves, for $m_0 < m$. Let T be a tree of order n and with ℓ leaves. We will show that $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$, if and only if $T \in G^m_0$.

(\Rightarrow) Assume that $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$, if and only if $T \in G^m_0$. We show that $T \in G^m_0$. If $T = P_2$, then by the definition of the family
If $T \in G^1_0$, then by Theorem 5(b), $\gamma(T) = \frac{1}{3}(n - \ell + 2 + 1)$, and so $m = 1$, a contradiction. Hence we may assume that $\text{diam}(T) \geq 2$, for otherwise the desired result follows. If $\text{diam}(T) = 2$, then T is a star, and by the definition of the family G^0_0, we have $T \in G^0_0$. Thus by Theorem 5(a), $\gamma(T) = \frac{1}{3}(n - \ell + 2 + 1)$, and so $m = 0$, a contradiction. If $\text{diam}(T) = 2$, then T is a double star, and by definition of the family G^0_0 we have $T \in G^0_0$. Thus by Theorem 5(c), $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$, and so $m = 2$, a contradiction. Hence, $\text{diam}(T) \geq 4$ and $n \geq 5$.

We now root the tree T at a vertex r at the end of a longest path P in T. Let u be a vertex at maximum distance from r, and so $d_T(u, r) = \text{diam}(T)$. Necessarily, r and u are leaves. Let v be the parent of u, let w be the parent of v, let x be the parent of w, and let y be the parent of x. Possibly, $y = r$. Since u is a vertex at maximum distance from the root r, every child of v is a leaf. By Observation 2, there exists a γ-set, say S, of T that contains no leaf of T; that is, $L(T) \cap S = \emptyset$. In particular, we note that $|S| = \gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$. In order to dominate the vertex u, we note therefore that $v \in S$. Let $d_T(v) = t$. We note that $t \geq 2$.

Claim 1. If $d_T(w) \geq 3$, then $T \in G^m_0$.

Proof. Suppose that $d_T(w) \geq 3$. In this case, we consider the tree $T' = T - V(T_v)$, where T_v is the maximal subtree at v. Let T' have order n' and let T' have ℓ' leaves. We note that $n' = n - t$. Since w is not a leaf in T', we have $\ell' = \ell - (t - 1) = \ell - t + 1$. By Corollary 4, $\gamma(T') = \frac{1}{3}(n' - \ell' + 2 + m')$ for some integer $m' \geq 0$. If a child of w is a leaf in T', then since the dominating set S contains no leaves, we have that $w \in S$. If no child of w is a leaf in T, then every child of w is a support vertex and therefore belongs to the set S. In both cases, we note that the set $S \setminus \{v\}$ is a dominating set of T', implying that $\gamma(T') \leq |S| - 1 = \gamma(T) - 1$. Every γ-set of T' can be extended to a dominating set of T by adding to it the vertex v, implying that $\gamma(T) \leq \gamma(T') + 1$. Consequently, $\gamma(T') = \gamma(T) - 1$. Thus,

\[
\begin{align*}
\gamma(T') &= \gamma(T) - 1 \\
&= \frac{1}{3}(n - \ell + 2 + m) - 1 \\
&= \frac{1}{3}(n - \ell + m - 1) \\
&= \frac{1}{3}(n' + t) - (\ell' + t - 1) + m - 1 \\
&= \frac{1}{3}(n' - \ell' + m).
\end{align*}
\]

As observed earlier, $\gamma(T') = \frac{1}{3}(n' - \ell' + 2 + m')$ for some integer $m' \geq 0$. Thus, $m' = m - 2$. Applying the inductive hypothesis to the tree T', we have $T' \in G^{m-2}_0$. Let v' be a child of w different from v. We note that the tree $T_{v'}$ is a component of $T' - w$ and this component is dominated by the vertex v'. We
can therefore choose a γ-set of $T' - w$ to contain the vertex v'. Such a γ-set of $T' - w$ is also a dominating set of T', implying that $\gamma(T') \leq \gamma(T' - w)$; that is, the vertex w is a special vertex of T'. Thus, the tree T is obtained from the tree $T' \in G_{0}^{m-2}$ by adding a vertex disjoint copy of a star T_{v} and joining the center v of T_{v} to a special vertex w in T'. Thus $T \in T_{0}^{m,1}$. Consequently, $T \in G_{0}^{m}$. This completes the proof of Claim 1.

By Claim 1, we may assume that $d_{T}(w) = 2$, for otherwise $T \in G_{0}^{m}$ as desired. We now consider the tree $T' = T - V(T_{w})$, where T_{w} is the maximal subtree at w. Let T' have order n' and let T' have ℓ' leaves. We note that $n' = n - t - 1$. By Corollary 4, $\gamma(T') = \frac{1}{3}(n' - \ell' + 2 + m')$ for some integer $m' \geq 0$.

As observed earlier, the vertex v belongs to the dominating set S. If $w \in S$, then we can replace w in S with the vertex x to produce a new γ-set of T that contains no leaf of T. Hence we may assume that $w \notin S$, implying that the set $S \setminus \{v\}$ is a dominating set of T' and therefore $\gamma(T') \leq |S| - 1 = \gamma(T) - 1$. Every γ-set of T' can be extended to a dominating set of T by adding to it the vertex v, implying that $\gamma(T) \leq \gamma(T') + 1$. Consequently, $\gamma(T') = \gamma(T) - 1$.

Claim 2. If $d_{T}(x) \geq 3$, then $T \in G_{0}^{m}$.

Proof. Suppose that $d_{T}(x) \geq 3$. In this case, the vertex x is not a leaf of T', implying that $\ell' = \ell - (t - 1) = \ell - t + 1$. Thus,

$$
\gamma(T') = \gamma(T) - 1
= \frac{1}{3}(n - \ell + m - 1)
= \frac{1}{3}(n' + t + 1) - (\ell' + t - 1) + m - 1
= \frac{1}{3}(n' - \ell' + m + 1).
$$

As observed earlier, $\gamma(T') = \frac{1}{3}(n' - \ell' + 2 + m')$ for some integer $m' \geq 0$. Thus, $m' = m - 1$. Applying the inductive hypothesis to the tree T', we have $T' \in G_{0}^{m-1}$. Thus, the tree T is obtained from the tree $T' \in G_{0}^{m-1}$ by adding a vertex disjoint copy of a star T_{v} with at least three vertices and joining a leaf of the star T_{v} to the non-leaf x of T'. Thus $T \in T_{0}^{m,2}$. Consequently, $T \in G_{0}^{m}$.

By Claim 2, we may assume that $d_{T}(x) = 2$, for otherwise $T \in G_{0}^{m}$ as desired. In this case, the vertex x is a leaf of T', implying that $\ell' = \ell - (t - 1) + 1 = \ell - t + 2$. Thus,

$$
\frac{1}{3}(n' - \ell' + 2 + m') = \gamma(T') = \gamma(T) - 1
= \frac{1}{3}(n - \ell + m - 1)
= \frac{1}{3}(n' + t + 1) - (\ell' + t - 2) + m - 1
= \frac{1}{3}(n' - \ell' + m + 2),
$$
and so \(m = m' \). Applying the inductive hypothesis to the tree \(T' \), we have \(T' \in G_0^m \). Thus, the tree \(T \) is obtained from the tree \(T' \in G_0^m \) by adding a vertex disjoint copy of a star \(T_v \) with at least three vertices and adding the edge \(xw \) joining a leaf \(w \) of \(T_v \) and a leaf \(x \) of \(T' \); that is, \(T \) is obtained from \(T' \) by Operation \(O \). Hence, by definition of the family \(G_0^m \), we have \(T \in G_0^m \), as desired. This completes the necessity part of the proof of Theorem 8.

\((\Leftarrow\Rightarrow)\) Conversely, assume that \(T \in G_0^m \), where \(m \geq 0 \). Recall that \(T \) is a tree of order \(n \geq 2 \) with \(\ell \) leaves. Thus, \(T \) is obtained from a sequence \(T_1, \ldots, T_q \) of trees, where \(q \geq 1 \) and where the tree \(T_1 \in T_0^{m,1} \cup T_0^{m,2} \), and the tree \(T = T_q \).

Further, if \(q \geq 2 \), then for each \(i \in [q] \setminus \{1\} \), the tree \(T_i \) can be obtained from the tree \(T_{i-1} \) by applying the following Operation \(O \). We proceed by induction on \(q \geq 1 \), namely second-induction, to show that \(\gamma_i(T) = \frac{1}{3}(n - \ell + 2 + m) \).

Claim 3. If \(q = 1 \), then \(\gamma_1(T) = \gamma(T) = \frac{1}{3}(n - \ell + 2 + m) \).

Proof. Suppose that \(q = 1 \). Thus, \(T_1 \in T_0^{m,1} \cup T_0^{m,2} \). We consider the two possibilities in turn, and in both cases we will show that the tree \(T \in G_0^m \) satisfies \(\gamma(T) = \frac{1}{3}(n - \ell + 2 + m) \).

Claim 3.1. If \(T \in T_0^{m,1} \), then \(\gamma(T) = \frac{1}{3}(n - \ell + 2 + m) \).

Proof. Suppose that \(T \in T_0^{m,1} \). Thus, \(T \) is obtained from a tree \(T' \in G_0^{m-2} \) by adding a vertex disjoint copy of a star \(Q \) with \(t \geq 2 \) vertices and joining the center of \(Q \), say \(y \), to a special vertex \(x \) in \(T' \). Let \(T' \) have order \(n' \), and so \(n' = n - t \). Further, let \(T' \) have \(\ell' \) leaves. Since \(x \) is a non-leaf of \(T' \), we have \(\ell' = \ell - (t - 1) \). Applying the first-induction hypothesis to the tree \(T' \in G_0^{m-2} \), we have \(\gamma_i(T') = \frac{1}{3}(n' - \ell' + 2 + (m - 2)) = \frac{1}{3}(n' - \ell' + m) \).

We show next that \(\gamma(T) = \gamma(T') + 1 \). Since \(x \) is a special vertex of \(T' \), we note that \(\gamma(T' - x) \geq \gamma(T') \). Every \(\gamma \)-set of \(T' \) can be extended to a dominating set of \(T \) by adding to it the vertex \(y \), implying that \(\gamma(T) \leq \gamma(T') + 1 \). Conversely, we can choose a \(\gamma \)-set, say \(D \), of \(T \) to contain the vertex \(y \) which dominates the star \(Q \). If \(x \in D \), then \(D \setminus \{y\} \) is a dominating set of \(T' \), and so \(\gamma(T') \leq |D| - 1 \). If \(x \notin D \), then \(D \setminus \{y\} \) is a dominating set of \(T' - x \), and so \(\gamma(T') \leq |D| - 1 \). In both cases, \(\gamma(T') \leq |D| - 1 = \gamma(T) - 1 \). Consequently, \(\gamma(T) = \gamma(T') + 1 \). Thus,

\[
\gamma(T) = \gamma(T') + 1 \\
= \frac{1}{3}(n' - \ell' + m) + 1 \\
= \frac{1}{3}((n - t) - (\ell - t + 1) + m) + 1 \\
= \frac{1}{3}(n - \ell + 2 + m).
\]

This completes the proof of Claim 3.1. \(\square \)
Claim 3.2. If $T \in \mathcal{T}_0^{m,2}$, then $\gamma_t(T) = \frac{1}{3}(n - \ell + 2 + m)$.

Proof. Suppose that $T \in \mathcal{T}_0^{m,2}$. Thus, T is obtained from a tree $T' \in G_0^{m-1}$ by adding a vertex disjoint copy of a star Q with $t \geq 3$ vertices and joining a leaf, say v, of Q to a non-leaf, say w, in T'. Let u be the center of the star Q. Let T' have order n', and so $n' = n - t$. Further, let T' have ℓ' leaves. Since w is a non-leaf of T', we have $\ell' = \ell - (t - 2)$. Applying the first-induction hypothesis to the tree $T' \in G_0^{m-1}$, we have $\gamma_t(T') = \frac{1}{3}(n' - \ell' + 2 + m) = \frac{1}{3}(n' - \ell' + m + 1)$.

We show next that $\gamma(T) = \gamma_t(T') + 1$. Every γ-set of T' can be extended to a dominating of T by adding to it the vertex u, implying that $\gamma(T) \leq \gamma(T') + 1$. By Observation 2, there exists a γ-set D of T that contains no leaf of Q. Thus, $u \in D$. If $v \in D$, then we can replace v in D with the vertex w. Hence we may assume that $v \notin D$, implying that $D \setminus \{u\}$ is a dominating set of T', and so $\gamma(T') \leq |D| - 1 = \gamma(T) - 1$. Consequently, $\gamma(T) = \gamma(T') + 1$. Thus,

$$
\gamma(T) = \gamma(T') + 1
= \frac{1}{3}(n' - \ell' + m + 1) + 1
= \frac{1}{3}((n - t) - (\ell - t + 2) + m + 1) + 1
= \frac{1}{3}(n - \ell + 2 + m).
$$

This completes the proof of Claim 3.2. \qed

By Claims 3.1 and 3.2, if $T \in \mathcal{T}_0^{m,1} \cup \mathcal{T}_0^{m,2}$, then $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$. This completes the proof of Claim 3. \qed

By Claim 3, if $q = 1$, then $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$. This establishes the base step of the second-induction. Let $q \geq 2$ and assume that if q' is an integer where $1 \leq q' < q$ and if $T' \in G_0^m$ is a tree of order $n' \geq 2$ with ℓ' leaves obtained from a sequence of q' trees, then $\gamma(T') = \frac{1}{3}(n' - \ell' + 2 + m)$. Recall that T is obtained from a sequence T_1, \ldots, T_q of trees, where $q \geq 1$ and where the tree $T_1 \in \mathcal{T}_0^{m,1} \cup \mathcal{T}_0^{m,2}$, and the tree $T = T_q$. Further for each $i \in [q] \setminus \{1\}$, the tree T_i can be obtained from the tree T_{i-1} by applying the Operation \mathcal{O}.

We now consider the tree $T' = T_{q-1}$. Thus, the tree $T \in G_0^m$ is obtained from the tree T' by adding a vertex disjoint copy of a star Q with $t \geq 3$ vertices and adding an edge joining a leaf of Q to a leaf of T'. Let T' have order n' and let T' have ℓ' leaves. We note that $n' = n - t$ and $\ell' = \ell - (t - 2) + 1 = \ell - t + 3$. Applying the second-induction hypothesis to the tree $T' \in G_0^m$, we have $\gamma(T') = \frac{1}{3}(n' - \ell' + 2 + m)$. Analogous arguments as before show that $\gamma(T) = \gamma_t(T') + 1$. Thus,

$$
\gamma(T) = \gamma(T') + 1
= \frac{1}{3}(n' - \ell' + 2 + m) + 1
= \frac{1}{3}((n - t) - (\ell - t + 3) + 2 + m) + 1
= \frac{1}{3}(n - \ell + 2 + m).
$$
Hence we have shown that if $T \in G_{k}^{m}$, where $m \geq 0$ and where T has order $n \geq 2$ with ℓ leaves, then $\gamma(T) = \frac{1}{3}(n - \ell + 2 + m)$. This completes the proof of Theorem 8.

We are now in a position to prove our main result, namely Theorem 1. Recall its statement.

Theorem 1. Let $m \geq 0$ be an integer. If G is a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G) = \frac{1}{3}(n - \ell + 2(1 - k) + m)$, if and only if $G \in G_{k}^{m}$.

Proof. Let $m \geq 0$ be an integer, and let G be a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves. We proceed by induction on k to show that $\gamma(G) = \frac{1}{3}(n - \ell + 2(1 - k) + m)$ if and only if $G \in G_{k}^{m}$. If $k = 0$, then the result follows from Theorem 8. This establishes the base case. Let $k \geq 1$ and assume that if G' is a cactus graph of order $n' \geq 2$ with k' cycles and ℓ' leaves where $0 \leq k' < k$, then $\gamma(G') = \frac{1}{3}(n' - \ell' + 2(1 - k') + m')$ if and only if $G' \in G_{k'}^{m'}$. Let G be a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves. We will show that $\gamma(G) = \frac{1}{3}(n - \ell + 2(1 - k) + m)$, if and only if $G \in G_{k}^{m}$.

If $m = 0$, then the result follows by Theorem 6(a). If $m = 1$, then the result follows by Theorem 6(b). If $m = 2$, then the result follows by Theorem 6(c). Thus, we may assume that $m \geq 3$, for otherwise the desired result follows.

(\Rightarrow) Assume that $\gamma(G) = \frac{1}{3}(n - \ell + 2 + m - 2k)$ (where we recall that here $m \geq 3$). We will show that $T \in G_{k}^{m}$. By Lemma 2, the graph G contains a cycle edge e such that $\gamma(G - e) = \gamma(G)$. Let $e = uv$, and consider the graph $G' = G - e$. Let G' have order n' with $k' \geq 0$ cycles and ℓ' leaves. We note that $n' = n$. Further, since G is a cactus graph, $k' = k - 1$. Removing the cycle edge e from G produces at most two new leaves, namely the ends of the edge e, implying that $\ell' - 2 \leq \ell \leq \ell'$. By Corollary 7, we have $\gamma(G') = \frac{1}{3}(n' - \ell' + 2 + m' - 2k')$ for some integer $m' \geq 0$. Applying the inductive hypothesis to the cactus graph G', we have that $G' \in G_{k'}^{m'} = G_{k-1}^{m}$. Our earlier observations imply that

\[
\frac{1}{3}(n - \ell + 2 + m - 2k) = \gamma(G) = \gamma(G')
= \frac{1}{3}(n' - \ell' + 2 + m' - 2k')
= \frac{1}{3}(n - \ell' + 2 + m' - 2(k - 1)),
\]

and so $m - \ell = m' - \ell' + 2$. Since G is a cactus, the vertices u and v are connected in $G' = G - e$ by a unique path. As observed earlier, $\ell' - 2 \leq \ell \leq \ell'$.

Suppose that $\ell = \ell'$. In this case, neither u nor v is a leaf of G', implying that both u and v have degree at least 2 in G'. Further, the equation $m - \ell = m' - \ell' + 2$ simplifies to $m' = m - 2$. Thus, $G' \in G_{k-1}^{m-2}$. Hence, the graph G is obtained from G' by Procedure J and therefore $G \in G_{k}^{m}$.
Suppose that $\ell = \ell' - 1$. In this case, exactly one of u and v is a leaf of G'. Further, the equation $m - \ell = m' - \ell' + 2$ simplifies to $m' = m - 1$. Thus, $G' \in G^{m-1}_{k-1}$. Hence, the graph G is obtained from G' by Procedure I, and therefore $G \in G^{m}_{k}$.

Suppose that $\ell = \ell' - 2$. In this case, both u and v are leaves in G'. Further, the equation $m - \ell = m' - \ell' + 2$ simplifies to $m' = m$. Thus, $G' \in G^{m}_{k-1}$. Hence, the graph G is obtained from G' by Procedure H, and therefore $G \in G^{m}_{k}$. This completes the necessity part of the proof of Theorem 1.

(\Leftarrow) Conversely, assume that $G \in G^{m}_{k}$. Recall that by our earlier assumptions, $m \geq 3$ and $k \geq 1$. Thus, the graph G is obtained from either a graph $G' \in G^{m}_{k-1}$ by Procedure H or from a graph $G' \in G^{m-1}_{k-1}$ by Procedure I or from a graph $G' \in G^{m-2}_{k-1}$ by Procedure J. In all three cases, let G' have order n' with $k' \geq 0$ cycles and ℓ' leaves. Further, in all cases we note that $n' = n$ and $k' = k - 1$. We consider the three possibilities in turn.

Suppose firstly that G is obtained from a graph $G' \in G^{m}_{k-1}$ by Procedure H. In this case, $\ell = \ell' - 2$ and $\gamma(G) = \gamma(G')$. Applying the inductive hypothesis to the graph $G' \in G^{m}_{k-1}$, we have $\gamma(G) = \gamma(G') = \frac{1}{3}(n' - \ell' + 2 + m - 2(k - 1)) = \frac{1}{3}(n - (\ell + 2) + 4 + m - 2k)$.

Suppose next that G is obtained from a graph $G' \in G^{m-1}_{k-1}$ by Procedure I. In this case, $\ell = \ell' - 1$ and $\gamma(G) = \gamma(G')$. Applying the inductive hypothesis to the graph $G' \in G^{m-1}_{k-1}$, we have $\gamma(G) = \gamma(G') = \frac{1}{3}(n' - \ell' + 2 + (m - 1) - 2(k - 1)) = \frac{1}{3}(n - (\ell + 1) + 3 + m - 2k)$.

Suppose finally that G is obtained from a graph $G' \in G^{m-2}_{k-1}$ by Procedure J. In this case, $\ell = \ell'$ and $\gamma(G) = \gamma(G')$. Applying the inductive hypothesis to the graph $G' \in G^{m-2}_{k-1}$, we have $\gamma(G) = \gamma(G') = \frac{1}{3}(n' - \ell' + 2 + (m - 2) - 2(k - 1)) = \frac{1}{3}(n - \ell + 2 + m - 2k)$. In all three cases, $\gamma(G) = \frac{1}{3}(n - \ell + 2 + m - 2k)$. This completes the proof of Theorem 1.

\section*{References}

Received 10 October 2019
Revised 3 January 2020
Accepted 3 January 2020