CORRIGENDUM TO: BOUNDS ON THE NUMBER OF EDGES OF EDGE-MINIMAL, EDGE-MAXIMAL AND l-HYPERTREES [DISCUSSIONES MATHEMATICAE GRAPH THEORY 36 (2016) 259–278]

PÉTER G.N. SZABÓ

Department of Computer Science and Information Theory
Budapest University of Technology and Economics
3-9., Műegyetem rkp., H-1111 Budapest, Hungary

E-mail: szape@cs.bme.hu

Abstract

In this corrigendum, we correct the proof of Theorem 10 from our paper titled „Bounds on the number of edges of edge-minimal, edge-maximal and l-hypertrees”.

Keywords: hypertree, chain in hypergraph, edge-minimal hypertree, edge-maximal hypertree, 2-hypertree, Steiner system.

2010 Mathematics Subject Classification: 05C65, 05D99.

1. The Corrected Proof of Theorem 10

In the original proof of Theorem 10, we stated that

$$\frac{1}{k-1}\binom{n}{k-1} - \frac{1}{(k-1)(n-k+1)}|\mathcal{E}| \leq \frac{1}{k-1}\binom{n}{k-1} - \frac{1}{(k-1)^2(n-k+1)}\binom{n}{k-1}.$$

This can only be true if $|\mathcal{E}| \geq \frac{1}{k-1}\binom{n}{k-1}$, but in reality, the exact opposite is true, i.e., $|\mathcal{E}| \leq \frac{1}{k-1}\binom{n}{k-1}$ (see Theorem 9).

Below, we present the corrected proof of Theorem 10.

Theorem 10. If $\mathcal{H} = (V, \mathcal{E})$ is a k-uniform 2-hypertree, then $|\mathcal{E}| \leq \frac{1}{k-1}\binom{n}{k-1} - \frac{1}{(k-1)^2}\binom{n}{k-2}$.

Proof. We use the simple fact that $\sum_{i=1}^{n-k+1} C_i \geq \frac{1}{n-k+1} |\mathcal{E}|$, which follows from $|\mathcal{E}| = \sum_{i=1}^{n-k+1} i C_i \leq (n-k+1) \sum_{i=1}^{n-k+1} C_i$.

Comparing it to the Star-equation (Theorem 9), we get

$$|\mathcal{E}| \leq \frac{1}{k-1} \left(\begin{array}{c} n \\ k-1 \end{array} \right) - \frac{1}{(k-1)(n-k+1)} |\mathcal{E}| - \frac{1}{k-1}!$$

which implies, that

$$|\mathcal{E}| \leq \left((k-1) + \frac{1}{(n-k+1)} \right)^{-1} \left(\begin{array}{c} n \\ k-1 \end{array} \right)$$

$$= \left(\frac{1}{k-1} - \frac{1}{(k-1)(n-k+1)} \right) \left(\begin{array}{c} n \\ k-1 \end{array} \right)$$

$$= \frac{1}{k-1} \left(\begin{array}{c} n \\ k-1 \end{array} \right) - \frac{1}{(k-1)^3} \left(\begin{array}{c} n \\ k-2 \end{array} \right).$$

Received 22 May 2019
Revised 19 September 2019
Accepted 23 September 2019