HEREDITARY EQUALITY OF DOMINATION AND
EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS

XUE-GANG CHEN, YU-FENG WANG

AND

XIAO-FEI WU

Department of Mathematics
North China Electric Power University
Beijing 102206, China

e-mail: gxcxdm@163.com

Abstract

Let \(\gamma(G) \) and \(\gamma_e(G) \) denote the domination number and exponential domination number of graph \(G \), respectively. Henning et al., in [Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275–285] gave a conjecture: There is a finite set \(\mathcal{F} \) of graphs such that a graph \(G \) satisfies \(\gamma(H) = \gamma_e(H) \) for every induced subgraph \(H \) of \(G \) if and only if \(G \) is \(\mathcal{F} \)-free. In this paper, we study the conjecture for subcubic graphs. We characterize the class \(\mathcal{F} \) by minimal forbidden induced subgraphs and prove that the conjecture holds for subcubic graphs.

Keywords: dominating set, exponential dominating set, subcubic graphs.

2010 Mathematics Subject Classification: 05C69, 05C35.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let \(G \) be a simple and undirected graph. The vertex set and the edge set of \(G \) are denoted by \(V(G) \) and \(E(G) \), respectively. The degree, neighborhood and closed neighborhood of a vertex \(v \) in the graph \(G \) are denoted by \(d_G(v) \), \(N_G(v) \) and \(N_G[v] = N_G(v) \cup \{v\} \), respectively. If the graph \(G \) is clear from context, we simply write \(d(v), N(v) \) and \(N[v] \), respectively. The minimum degree and maximum degree of the graph \(G \) are denoted by \(\delta(G) \) and \(\Delta(G) \), respectively. Let \(S \subseteq V(G) \); \(N(S) = \bigcup_{v \in S} N(v) \).
and \(N[S] = N(S) \cup S \). The graph induced by \(S \subseteq V \) is denoted by \(G[S] \). The distance \(dist_G(X,Y) \) between two sets \(X \) and \(Y \) of vertices in \(G \) is the minimum length of a path in \(G \) between a vertex in \(X \) and a vertex in \(Y \). If no such path exists, then let \(dist_G(X,Y) = \infty \). Let \(P_n, C_n \) and \(K_n \) denote the path, cycle and complete graph with order \(n \), respectively. Let \(l(G) \) denote the maximum length of an induced cycle in \(G \). If \(\Delta(G) \leq 3 \), then \(G \) is called a subcubic graph.

A set \(D \subseteq V \) in a graph \(G \) is called a dominating set if every vertex outside \(D \) is adjacent to at least one vertex in \(D \). The domination number \(\gamma(G) \) equals the minimum cardinality of a dominating set in \(G \). The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [3] and [4].

Let \(D \) be a set of vertices of a graph \(G \). For two vertices \(u \) and \(v \) of \(G \), let \(dist_{(G,D)}(u,v) \) be the minimum length of a path \(P \) in \(G \) between \(u \) and \(v \) such that \(D \) contains exactly one endvertex of \(P \) but no internal vertex of \(P \). If no such path exists, then let \(dist_{(G,D)}(u,v) = \infty \). Note that, if \(u \) and \(v \) are distinct vertices in \(D \), then \(dist_{(G,D)}(u,u) = 0 \) and \(dist_{(G,D)}(u,v) = \infty \). For a vertex \(u \) of \(G \), let \(\omega_{(G,D)}(u) = \sum_{v \in D} \left(\frac{1}{2} \right)^{dist_{(G,D)}(u,v) - 1} \), where \(\left(\frac{1}{2} \right)^\infty = 0 \).

Dankelmann et al. [2] define a set \(D \) to be an exponential dominating set of \(G \) if \(\omega_{(G,D)}(u) \geq 1 \) for every vertex \(u \) of \(G \), and the exponential domination number \(\gamma_e(G) \) of \(G \) as the minimum size of an exponential dominating set of \(G \). Note that \(\omega_{(G,D)}(u) \geq 2 \) for \(u \in D \), and that \(\omega_{(G,D)}(u) \geq 1 \) for every vertex \(u \) that has a neighbor in \(D \), which implies \(\gamma_e(G) \leq \gamma(G) \).

Bessy et al. [1] show that computing the exponential domination number is APX-hard for subcubic graphs. It is not even known how to decide efficiently for a given tree \(T \) whether its exponential domination number \(\gamma_e(T) \) equals its domination number \(\gamma(T) \). The difficulty to decide whether \(\gamma_e(G) = \gamma(G) \) for a given graph \(G \) motivates the study of the hereditary class \(\mathcal{G} \) of graphs that satisfy this equality, that is, \(\mathcal{G} \) is the set of those graphs \(G \) such that \(\gamma_e(H) = \gamma(H) \) for every induced subgraph \(H \) of \(G \).

Henning et al. [5] proved the following results.

Proposition 1 [5]. If \(G \) is a \(\{B,D,K_4,K_{2,3},P_3 \square P_3\} \)-free graph, then \(\gamma(H) = \gamma_e(H) \) for every induced subgraph \(H \) of \(G \) if and only if \(G \) is \(\{P_7,C_7,F_1,F_2,F_3,F_4,F_5\} \)-free.

Proposition 2 [5]. If \(T \) is a tree, then \(\gamma(H) = \gamma_e(H) \) for every induced subgraph \(H \) of \(T \) if and only if \(T \) is \(\{P_7,F_1\} \)-free.

Furthermore, they gave the following conjecture.

Conjecture 1 [5]. There is a finite set \(\mathcal{F} \) of graphs such that graph \(G \) satisfies \(\gamma(H) = \gamma_e(H) \) for every induced subgraph \(H \) of \(G \) if and only if \(G \) is \(\mathcal{F} \)-free.
In this paper, we study the conjecture for subcubic graphs. We characterize the class \mathcal{F} by minimal forbidden induced subgraphs. Our main result is the following.

Theorem 1. Let G be a subcubic graph. Then $\gamma(H) = \gamma_e(H)$ for every induced subgraph H of G if and only if G is \mathcal{F}-free, where $\mathcal{F} = \{P_7, C_7, F_1, F_2, F_3, F_6, F_7, F_8, F_9, F_{10}, F_{11}\}$.

Figure 1. The graphs $K_{2,3}$, $P_2 \square P_3$, B and D.

Figure 2. The graphs F_1, F_2, F_3, F_4 and F_5.

Figure 3. The graphs F_6, \ldots, F_{11}.
2. Proof of Theorem 1

Proof. Since $\gamma(H) > \gamma_e(H)$ for every graph H in \mathcal{F}, necessity follows. In order to prove sufficiency, suppose that G is an \mathcal{F}-free graph with $\gamma(G) > \gamma_e(G)$ of minimum order. By the choice of G, we have $\gamma(H) = \gamma_e(H)$ for every proper induced subgraph H of G. Clearly, G is connected. Since $\gamma_e(G) = 1$ if and only if $\gamma(G) = 1$, we obtain $\gamma_e(G) \geq 2$ and $\gamma(G) \geq 3$. Since G is $\{P_t, C_7\}$-free, either G is a tree or G is a subcubic graph with $3 \leq l(G) \leq 6$.

By Proposition 2, G is not a tree. Then G is a connected subcubic graph with $3 \leq l(G) \leq 6$. Let $C : x_1x_2x_3 \cdots x_{l(G)}x_1$ be a longest induced cycle of G. Let $R = V(G) \setminus V(C)$.

Case 1. $l(G) = 6$. Assume some vertex z has distance 2 from a vertex on $V(C)$ in G and x_1yz is a path in G. If y is adjacent to x_2, then $G[\{x_1, x_2, x_3, x_6, y, z\}] = F_6$, which is a contradiction. If y is adjacent to x_3, then $G[\{x_1, x_3, x_4, x_6, y, z\}] = F_1$, which is a contradiction. By symmetry, we can assume without loss of generality that y is adjacent to neither x_5 nor x_6. Then $G[\{x_1, x_2, x_5, x_6, y, z\}] = F_1$, which is a contradiction. So every vertex in R has distance one from one vertex on $V(C)$. Since G is F_1-free, every vertex in R has at least two neighbors on C. Since G is a subcubic graph and $\gamma(G) \geq 3$, $2 \leq |R| \leq 3$.

Case 1.1. $|R| = 3$. Say $R = \{u, v, w\}$. Then every vertex in R is adjacent to exactly two vertices on C. Suppose that there exists one vertex in R that is adjacent to two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_1 and x_4. Then $G[\{x_1, x_2, x_3, x_5, x_6, u\}] = F_1$, which is a contradiction. Hence every vertex in R is adjacent to two vertices on C with distance at most two. Since G is subcubic and the three vertices in R can not all be adjacent to two vertices on C, there exists a vertex in R that is adjacent to two adjacent vertices on C. Without loss of generality, we can assume that u is adjacent to x_1 and x_2. Assume that x_3 is adjacent to v. Then v is adjacent to either x_4 or x_5.

If v is adjacent to x_4, then w is adjacent to x_5 and x_6. If $vw \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, x_5, v, w\}] = F_{10}$, which is a contradiction. If $vw \in E(G)$, then $G[\{x_1, x_2, x_3, x_4, u, v, w\}] = F_{10}$, which is a contradiction.

If v is adjacent to x_5, then w is adjacent to x_4 and x_6. If $vw \in E(G)$, then $G[\{x_1, x_4, x_5, u, v, w\}] = F_8$, which is a contradiction. If $vw \notin E(G)$, then $G[\{x_1, x_2, x_5, v, w\}] = F_1$, which is a contradiction.

Case 1.2. $|R| = 2$. Say $R = \{u, v\}$. Suppose that there exists one vertex in R such that it is adjacent to exactly two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_1 and x_4. Then $G[\{x_1, x_2, x_3, x_5, x_6, u\}] = F_1$, which is a contradiction. Hence, we can assume that every vertex in R is not adjacent to exactly two vertices on C with distance three.

Proof. Since $\gamma(H) > \gamma_e(H)$ for every graph H in \mathcal{F}, necessity follows. In order to prove sufficiency, suppose that G is an \mathcal{F}-free graph with $\gamma(G) > \gamma_e(G)$ of minimum order. By the choice of G, we have $\gamma(H) = \gamma_e(H)$ for every proper induced subgraph H of G. Clearly, G is connected. Since $\gamma_e(G) = 1$ if and only if $\gamma(G) = 1$, we obtain $\gamma_e(G) \geq 2$ and $\gamma(G) \geq 3$. Since G is $\{P_t, C_7\}$-free, either G is a tree or G is a subcubic graph with $3 \leq l(G) \leq 6$.

By Proposition 2, G is not a tree. Then G is a connected subcubic graph with $3 \leq l(G) \leq 6$. Let $C : x_1x_2x_3 \cdots x_{l(G)}x_1$ be a longest induced cycle of G. Let $R = V(G) \setminus V(C)$.

Case 1. $l(G) = 6$. Assume some vertex z has distance 2 from a vertex on $V(C)$ in G and x_1yz is a path in G. If y is adjacent to x_2, then $G[\{x_1, x_2, x_3, x_6, y, z\}] = F_6$, which is a contradiction. If y is adjacent to x_3, then $G[\{x_1, x_3, x_4, x_6, y, z\}] = F_1$, which is a contradiction. By symmetry, we can assume without loss of generality that y is adjacent to neither x_5 nor x_6. Then $G[\{x_1, x_2, x_5, x_6, y, z\}] = F_1$, which is a contradiction. So every vertex in R has distance one from one vertex on $V(C)$. Since G is F_1-free, every vertex in R has at least two neighbors on C. Since G is a subcubic graph and $\gamma(G) \geq 3$, $2 \leq |R| \leq 3$.

Case 1.1. $|R| = 3$. Say $R = \{u, v, w\}$. Then every vertex in R is adjacent to exactly two vertices on C. Suppose that there exists one vertex in R that is adjacent to two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_1 and x_4. Then $G[\{x_1, x_2, x_3, x_5, x_6, u\}] = F_1$, which is a contradiction. Hence every vertex in R is adjacent to two vertices on C with distance at most two. Since G is subcubic and the three vertices in R can not all be adjacent to two vertices on C, there exists a vertex in R that is adjacent to two adjacent vertices on C. Without loss of generality, we can assume that u is adjacent to x_1 and x_2. Assume that x_3 is adjacent to v. Then v is adjacent to either x_4 or x_5.

If v is adjacent to x_4, then w is adjacent to x_5 and x_6. If $vw \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, x_5, v, w\}] = F_{10}$, which is a contradiction. If $vw \in E(G)$, then $G[\{x_1, x_2, x_3, x_4, u, v, w\}] = F_{10}$, which is a contradiction.

If v is adjacent to x_5, then w is adjacent to x_4 and x_6. If $vw \in E(G)$, then $G[\{x_1, x_4, x_5, u, v, w\}] = F_8$, which is a contradiction. If $vw \notin E(G)$, then $G[\{x_1, x_2, x_5, v, w\}] = F_1$, which is a contradiction.

Case 1.2. $|R| = 2$. Say $R = \{u, v\}$. Suppose that there exists one vertex in R such that it is adjacent to exactly two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_1 and x_4. Then $G[\{x_1, x_2, x_3, x_5, x_6, u\}] = F_1$, which is a contradiction. Hence, we can assume that every vertex in R is not adjacent to exactly two vertices on C with distance three.
three. So there exists one vertex, say \(u \in R \), such that \(u \) is adjacent to two vertices on \(C \) with distance at most two.

Suppose that \(u \) is adjacent to \(x_1 \) and \(x_2 \). If \(v \) is adjacent to \(x_4 \), where \(i \in \{4, 5\} \), then \(\{x_1, x_4\} \) or \(\{x_2, x_5\} \) is a dominating set of \(G \) and \(\gamma(G) \leq 2 \), which is a contradiction. So \(v \) is adjacent to exactly two vertices \(x_3 \) and \(x_6 \) on \(C \) with distance three, which is a contradiction.

Suppose that \(u \) is adjacent to \(x_1 \) and \(x_3 \). If \(v \) is adjacent to \(x_4 \), where \(i \in \{4, 6\} \), then \(\{x_1, x_4\} \) or \(\{x_3, x_6\} \) is a dominating set of \(G \) and \(\gamma(G) \leq 2 \), which is a contradiction. So \(v \) is adjacent to exactly two vertices \(x_2 \) and \(x_5 \) on \(C \) with distance three, which is a contradiction.

Case 2. \(l(G) = 5 \). Assume some vertex \(z \) has distance 2 from \(V(C) \) in \(G \) and \(x_1yz \) is a path in \(G \). If \(y \) is adjacent to \(x_2 \), then \(G[\{x_1, x_2, x_3, x_5, y, z\}] = F_6 \), which is a contradiction. If \(y \) is adjacent to \(x_3 \), then \(G[\{x_2, x_3, x_4, x_5, y, z\}] = F_1 \), which is a contradiction. By symmetry, \(y \) has exactly one neighbor \(x_1 \) on \(C \). Then \(G[\{x_1, x_2, x_3, x_5, y, z\}] = F_1 \), which is a contradiction. So every vertex in \(R \) has distance one from one vertex on \(V(C) \). Since \(G \) is a subcubic graph and \(\gamma(G) \geq 3, 2 \leq |R| \leq 5 \).

Case 2.1. \(|R| = 5 \). Say \(R = \{y_i \mid x_iy_i \in E(G), i = 1, 2, \ldots, 5\} \). If \(y_iy_2 \notin E(G) \), then \(G[\{x_1, x_2, x_4, x_5, y_1, y_2\}] = F_1 \), which is a contradiction. Hence, \(y_1y_2 \in E(G) \). Similarly, \(y_iy_{i+1} \in E(G) \) for \(i = 1, 2, 3, 4 \). Then \(G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_2 \), which is a contradiction.

Case 2.2. \(|R| = 4 \). Say \(R = \{y_i \mid x_iy_i \in E(G), i = 1, 2, 3, 4\} \). If \(y_1y_2 \notin E(G) \), then \(G[\{x_1, x_2, x_3, x_4, y_1, y_2\}] = F_1 \), which is a contradiction. If \(y_3y_4 \notin E(G) \), then \(G[\{x_1, x_2, x_3, x_4, y_3, y_4\}] = F_1 \), which is a contradiction. Hence, \(y_1y_2 \in E(G) \) and \(y_3y_4 \in E(G) \). Since \(x_5 \) is adjacent to at most one vertex in \(\{y_1, y_2, y_3, y_4\} \), either \(G[V(C) \cup \{y_1, y_2\}] = F_3 \) or \(G[V(C) \cup \{y_3, y_4\}] = F_3 \), which is a contradiction.

Case 2.3. \(|R| = 3 \). Let \(G' \) be a graph with \(V(G') = V(C) \cup \{y_1, y_2, y_3\} \) and \(E(G') = E(C) \cup \{x_1y_1, x_2y_2, x_3y_3, y_1y_2\} \). Suppose that \(G' \) is a subgraph of \(G \). If \(y_1x_5 \in E(G) \), then \(\{x_3, y_1\} \) is a dominating set of \(G \), which is a contradiction. Hence, \(y_1x_5 \notin E(G) \). It follows that \(y_1 \) is adjacent to at most one vertex in \(\{x_4, y_3\} \).

Suppose that \(y_1x_4 \in E(G) \). If \(y_2x_5 \in E(G) \), then \(G[\{x_1, x_2, x_3, x_5, y_1, y_2, y_3\}] = F_8 \), which is a contradiction. If \(y_3x_5 \in E(G) \), then \(G[\{x_1, x_2, x_3, x_5, y_1, y_2, y_3\}] = F_3 \) or \(G[V(C) \cup \{y_1, y_2, y_3\}] = F_1 \), which is a contradiction. If \(d_C(x_5) = 2 \), then \(G[\{x_2, x_3, x_4, x_5, y_2, y_3\}] = F_1 \) or \(G[V(C) \cup \{y_2, y_3\}] = F_3 \), which is a contradiction. Hence, \(y_1x_4 \notin E(G) \).

Suppose that \(y_1y_3 \in E(G) \). If \(y_3x_4 \in E(G) \), then \(G[\{x_2, x_3, x_4, x_5, y_1, y_3\}] = F_6 \), which is a contradiction. If \(y_3x_5 \in E(G) \), then \(G[V(C) \cup \{y_1, y_2\}] = F_3 \) or \(G[V(C) \cup \{y_1, y_2, y_3\}] = F_1 \), which is a contradiction. If \(y_3x_4 \notin E(G) \) and
$y_3x_5 \notin E(G)$, then $G[\{x_1, x_3, x_4, x_5, y_1, y_3\}] = C_6$ and $l(G) \geq 6$, which is a contradiction. Hence, $y_1y_3 \notin E(G)$.

So $d_G(y_1) = 2$. Since G is F_3-free, $y_2x_4 \in E(G)$ or $y_2x_5 \in E(G)$. If $y_2x_4 \in E(G)$, then $G[\{x_1, x_2, x_3, x_5, y_2, y_3\}] = F_1$ or $G[\{x_1, x_2, x_3, y_1, y_2, y_3\}] = F_3$, which is a contradiction. If $y_2x_5 \in E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_9$, which is a contradiction. Hence, we can assume that no subgraph in G is isomorphic to G'.

By symmetry, we discuss it in the following cases.

Case 2.3.1. $R = \{y_i | x_iy_i \in E(G), i = 1, 2, 3\}$. If $E(G[\{y_1, y_2, y_3\}]) = \emptyset$, then $G[\{x_1, x_2, x_3, y_1, y_2, y_3\}] = F_1$, which is a contradiction. Hence, $E(G[\{y_1, y_2, y_3\}]) \neq \emptyset$. Since no subgraph in G is isomorphic to G', $y_1y_2, y_2y_3 \notin E(G)$ and $y_1y_3 \in E(G)$. Since no subgraph in G is isomorphic to G', $y_1x_4 \notin E(G)$. If $y_2x_4 \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_3\}] = F_1$, which is a contradiction. Hence, $y_2x_4 \in E(G)$. Then $G[\{x_1, x_2, x_3, y_1, y_2, y_3\}] = F_3$, which is a contradiction.

Case 2.3.2. $R = \{y_i | x_iy_i \in E(G), i = 1, 2, 4\}$. If $E(G[\{y_1, y_2, x_3\}]) = \emptyset$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_1$, which is a contradiction. Hence, $E(G[\{y_1, y_2, x_3\}]) \neq \emptyset$. Suppose that $y_1x_3 \in E(G)$. Since G is F_1-free and no subgraph in G is isomorphic to G', $y_1y_2, y_1y_4 \notin E(G)$ and $y_2y_4 \in E(G)$. Then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_3$, which is a contradiction. Hence, $y_1x_3 \notin E(G)$.

Suppose that $y_2x_3 \in E(G)$. If $E(G[\{y_1, y_2, y_4\}]) = \emptyset$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_1$, which is a contradiction. Hence, $E(G[\{y_1, y_2, y_4\}]) \neq \emptyset$. If $y_1y_4 \in E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_4\}] = C_6$, which is a contradiction. If $y_1y_2 \in E(G)$ or $y_2y_4 \in E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_7$, which is a contradiction. Hence, $y_2x_3 \notin E(G)$.

So $y_1x_3 \notin E(G)$, $y_2x_3 \notin E(G)$ and $y_1y_2 \in E(G)$. Since no subgraph in G is isomorphic to G', $y_4x_3 \notin E(G)$. Then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_2$ or $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_3$, which is a contradiction.

Case 2.4. $|R| = 2$. Say $R = \{y_1, y_2\}$ and $y_1x_1 \in E(G)$. If $y_2x_i \in E(G)$ for $i \in \{3, 4\}$, then $\{x_1, x_i\}$ is a dominating set of G, which is a contradiction. Hence, $y_2x_3 \notin E(G)$ and $y_2x_4 \notin E(G)$. Without loss of generality, we can assume that $y_2x_2 \in E(G)$. If $y_1x_i \in E(G)$ for $i \in \{4, 5\}$, then $\{x_2, x_i\}$ is a dominating set of G, which is a contradiction. Hence, $y_1x_4 \notin E(G)$ and $y_1x_5 \notin E(G)$.

If $y_1x_3 \notin E(G)$ and $y_1y_2 \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2\}] = F_1$, which is a contradiction. Hence, $y_1x_3 \in E(G)$ or $y_1y_2 \in E(G)$.

Suppose that $y_1x_3 \in E(G)$. If $y_2x_5 \in E(G)$, then $\{x_3, x_5\}$ is a dominating set of G, which is a contradiction. Hence, $y_2x_5 \notin E(G)$. If $y_1y_2 \notin E(G)$, then $G[\{x_2, x_3, x_4, x_5, y_1, y_2\}] = F_1$, which is a contradiction. If $y_1y_2 \in E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_9$, which is a contradiction. Hence, $y_1x_3 \notin E(G)$ and $y_1y_2 \in E(G)$. If $y_2x_5 \notin E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_3$, which is a contradiction. If $y_2x_5 \in E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_9$, which is a contradiction.
Case 3. \(l(G) = 4 \). Assume some vertex \(t \) has distance 3 from one vertex on \(V(C) \) in \(G \) and \(x_1yzt \) is a path in \(G \). If \(y \) is adjacent to \(x_2 \), then \(G[V(C) \cup \{y,z,t\}] = F_7 \), which is a contradiction. If \(y \) is adjacent to \(x_3 \), then \(G[V(C) \cup \{y,z,t\}] = F_8 \), which is a contradiction. If \(y \) is not adjacent to \(x_i \) for \(i = 2, 3, 4 \), then \(G[V(C) \cup \{y,z,t\}] = F_2 \), which is a contradiction. So every vertex in \(R \) has distance at most two from a vertex on \(V(C) \). If \(|N(V(C)) \cap R| = 1 \), say \(x_1y_1 \in E(G) \), then \(\{y_1, x_3\} \) is a dominating set of \(G \), which is a contradiction. Hence, \(2 \leq |N(V(C)) \cap R| \leq 4 \).

Case 3.1. \(|N(V(C)) \cap R| = 4 \). Say \(N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1, 2, 3, 4\} \). If \(y_1y_3 \in E(G) \), then \(G[\{x_1, x_2, x_3, y_1, y_3\}] = C_5 \), which is a contradiction with \(l(G) = 4 \). By symmetry, \(y_1y_3 \notin E(G) \) and \(y_2y_4 \notin E(G) \).

If \(y_1y_2 \notin E(G) \) and \(y_2y_3 \notin E(G) \), then \(G[\{x_1, x_2, x_3, y_1, y_2, y_3\}] = F_1 \), which is a contradiction. Hence, \(y_1y_2 \in E(G) \) or \(y_2y_3 \in E(G) \). Without loss of generality, we can assume that \(y_1y_2 \in E(G) \). If \(y_2y_3 \in E(G) \), then \(G[\{x_1, x_3, x_4, y_1, y_2, y_3, y_4\}] = F_2 \), which is a contradiction. If \(y_3y_4 \notin E(G) \), then \(G[\{x_2, x_3, x_4, y_2, y_3, y_4\}] = F_1 \), which is a contradiction.

Case 3.2. \(|N(V(C)) \cap R| = 3 \). Say \(N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1, 2, 3\} \). If \(y_1y_3 \in E(G) \), then \(G[\{x_1, x_2, x_3, y_1, y_3\}] = C_5 \), which is a contradiction. Hence, \(y_1y_3 \notin E(G) \). If \(y_1y_2 \notin E(G) \) and \(y_2y_3 \notin E(G) \), then \(G[\{x_1, x_2, x_3, y_1, y_2, y_3\}] = F_1 \), which is a contradiction. Hence, \(y_1y_2 \in E(G) \) or \(y_2y_3 \in E(G) \). Without loss of generality, we can assume that \(y_1y_2 \in E(G) \). If \(y_1x_4 \in E(G) \), then \(G[\{x_2, x_3, x_4, y_1, y_2\}] = C_5 \), which is a contradiction.

Suppose that \(y_2y_3 \in E(G) \). If \(y_3x_4 \in E(G) \), then \(G[\{x_1, x_4, y_1, y_2, y_3\}] = C_5 \), which is a contradiction. Hence, \(y_1x_4 \notin E(G) \) and \(y_3x_4 \notin E(G) \). Then \(G[\{x_1, x_3, x_4, y_1, y_2, y_3\}] = C_6 \), which is a contradiction. Hence \(y_2y_3 \notin E(G) \).

Suppose that \(N(y_2) \setminus (V(C) \cup \{y_1, y_2, y_3\}) \neq \emptyset \), say \(t \in N(y_2) \setminus (V(C) \cup \{y_1, y_2, y_3\}) \). Since \(l(G) = 4 \) and \(y_2t \notin E(G) \), then \(G[\{x_1, x_2, x_3, y_1, y_2, y_3, t\}] = F_2 \), which is a contradiction. Hence \(N(y_3) \setminus (V(C) \cup \{y_1, y_2, y_3\}) = \emptyset \).

Suppose that \(N(y_2) \setminus (V(C) \cup N[y_1]) \neq \emptyset \), say \(t \in N(y_2) \setminus (V(C) \cup N[y_1]) \). Since \(l(G) = 4 \) and \(y_3t \notin E(G) \), then \(G[\{x_1, x_2, x_3, y_2, y_3, t\}] = F_1 \), which is a contradiction. Hence, \(N(y_2) \setminus (V(C) \cup N[y_1]) = \emptyset \). Then \(\{y_1, x_3\} \) is a dominating set of \(G \), which is a contradiction.

Case 3.3. \(|N(V(C)) \cap R| = 2 \).

Case 3.3.1. \(N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1, 2\} \). Since \(\{x_1, x_2\} \) is not a dominating set of \(G \), \(V(G) \setminus (V(C) \cup \{y_1, y_2\}) \neq \emptyset \). Say \(t_1 \in N(y_1) \setminus (V(C) \cup \{y_2\}) \).

Suppose that \(y_1y_2 \in E(G) \). If \(N(y_2) \setminus (V(C) \cup \{y_1, t_1\}) = \emptyset \), then \(\{y_1, x_3\} \) is a dominating set of \(G \), which is a contradiction. Hence, we can assume that \(t_2 = N(y_2) \setminus \{x_2, y_1\} \). If \(t_1t_2 \notin E(G) \), then \(G[\{x_2, x_3, y_2, t_1, t_2\}] = F_1 \), which
is a contradiction. If \(t_1 t_2 \in E(G) \), then \(G[x_2, x_3, x_4, y_1, y_2, t_1, t_2] = F_2 \), which is a contradiction. Hence, we can assume that \(y_1 y_2 \notin E(G) \).

Suppose that \(N(y_2) \setminus V(C) = \emptyset \). Since \(G[x_1, x_2, x_4, y_1, y_2, t_1] = F_1 \), \(x_4 y_1 \in E(G) \) or \(x_4 y_2 \in E(G) \). If \(x_4 y_1 \in E(G) \), then \(\{y_1, x_2\} \) is a dominating set of \(G \), which is a contradiction. Hence, \(x_4 y_2 \in E(G) \). If \(x_3 y_1 \in E(G) \) or \(x_3 y_2 \in E(G) \), then \(\{y_1, y_2\} \) is a dominating set of \(G \), which is a contradiction. Hence, \(x_3 y_1 \notin E(G) \) and \(x_3 y_2 \notin E(G) \). Then \(G[x_1, x_2, x_3, x_4, y_1, y_2, t_1] = F_8 \), which is a contradiction. Hence, \(N(y_2) \setminus V(C) \neq \emptyset \). Say \(t_2 \in N(y_2) \setminus V(C) \). Since \(G \) is \(F_1 \)-free, \(\{x_3, x_4\} \subseteq N(\{y_1, y_2\}) \). Then \(\{y_1, y_2\} \) is a dominating set of \(G \), which is a contradiction.

Case 3.3.2. \(N(C) = \{y_i \mid x_i y_i \in E(G) \}, i = 1, 3\). Since \(l = 4 \), \(y_1 y_3 \notin E(G) \). Since \(\{x_1, x_3\} \) is not a dominating set of \(G \), there is a vertex \(u \) at distance 2 from \(\{x_1, y_3\} \) in \(G \). If \(u x_i \in E(G) \) for \(i \in \{2, 3\} \), then \(G[u, x_i, x_1, y_1, y_2, y_3, y_4] = P_7 \), which is a contradiction. Suppose that \(u \) is adjacent to \(y_1 \). If \(u y_2 \notin E(G) \), then \(G[u, x_1, x_2, y_1, y_2, y_3] = F_1 \), which is a contradiction. If \(u y_2 \in E(G) \), then \(G[u, x_1, x_2, y_1, y_2, y_3, y_4] = F_{10} \), which is a contradiction. Hence, \(u y_1 \notin E(G) \). By a similar way, \(u y_2 \notin E(G) \) and \(u y_4 \notin E(G) \). Suppose that there exists a path \(y_3 u u \). If \(u y_2 \in E(G) \), then \(G[u, v, y_1, y_2, y_3, y_4] = F_6 \), which is a contradiction. Since \(l = 3 \), \(\{x_2, x_3, y_1\} \cap N(v) = \emptyset \). So \(G[u, v, x_1, x_2, y_1, y_2, y_3] = P_7 \), which is a contradiction. Hence, we can assume that every vertex in \(R \) has distance at most 3 from one vertex on \(V(C) \).

Case 4. \(l(G) = 3 \). Since \(G \) is \(P_7 \)-free, every vertex in \(R \) has distance at most 4 from one vertex on \(V(C) \). Assume vertex \(y_4 \) has distance 4 from one vertex on \(V(C) \) in \(G \) and \(x_1 y_1 y_2 y_3 y_4 \) is a path in \(G \). Since \(\{x_1, y_3\} \) is not a dominating set of \(G \), there is a vertex \(u \) at distance 2 from \(\{x_1, y_3\} \) in \(G \). If \(u x_i \in E(G) \) for \(i \in \{2, 3\} \), then \(G[u, x_i, x_1, y_1, y_2, y_3, y_4] = P_7 \), which is a contradiction. Suppose that \(u \) is adjacent to \(y_1 \). If \(u y_2 \notin E(G) \), then \(G[u, x_1, x_2, y_1, y_2, y_3] = F_1 \), which is a contradiction. Hence, \(u y_1 \notin E(G) \). By a similar way, \(u y_2 \notin E(G) \) and \(u y_4 \notin E(G) \). Suppose that there exists a path \(y_3 u u \). If \(u y_2 \in E(G) \), then \(G[u, v, y_1, y_2, y_3, y_4] = F_6 \), which is a contradiction. Since \(l = 3 \), \(\{x_2, x_3, y_1\} \cap N(v) = \emptyset \). So \(G[u, v, x_1, x_2, y_1, y_2, y_3] = P_7 \), which is a contradiction. Hence, we can assume that every vertex in \(R \) has distance at most 3 from one vertex on \(V(C) \).

Case 4.1. \(|N(V(C)) \cap R| = 3 \). Say \(|N(V(C)) \cap R| = \{y_i \mid x_i y_i \in E(G), i = 1, 2, 3\} \). Since \(l = 3 \), \(E(G[\{y_1, y_2, y_3\}]) = \emptyset \). Then \(G[x_1, x_2, x_3, y_1, y_2, y_3] = F_6 \), which is a contradiction.

Case 4.2. \(|N(V(C)) \cap R| = 2 \). Say \(|N(V(C)) \cap R| = \{y_i \mid x_i y_i \in E(G), i = 1, 2\} \). Since \(l = 3 \), \(y_1 y_2 \notin E(G) \). Suppose that there exists an induced path \(x_1 y_1 u_1 v_1 \). Since \(G \) is \(P_7 \)-free, \(N(y_2) \setminus V(C) = \emptyset \).

Suppose that there exists a vertex \(u \) such that \(u \in N(y_1) \setminus \{x_1, u_1\} \). If \(u_1 u \notin E(G) \), then \(G[u, x_1, x_2, y_1, u_1, v_1] = F_1 \), which is a contradiction. If \(u_1 u \in E(G) \), then \(\{u_1, x_2\} \) is a dominating set of \(G \), which is a contradiction. If \(N(y_1) \setminus \{x_1, u_1\} = \emptyset \), then \(\{u_1, x_2\} \) is a dominating set of \(G \), which is a contradiction. Hence, we can assume that every vertex in \(V(G) \setminus (V(C) \cup \{y_1, y_2\}) \) is adjacent to exactly one vertex in \(\{y_1, y_2\} \).
If \(N(y_i) \cap (V(G) \setminus (V(C) \cup \{y_1, y_2\})) = \emptyset \), then \(\{x_i, y_j\} \) is a dominating set of \(G \), where \(i, j \in \{1, 2\} \) and \(j \neq i \), which is a contradiction. Suppose that \(N(y_i) \cap (V(G) \setminus (V(C) \cup \{y_1, y_2\})) \neq \emptyset \) for \(i \in \{1, 2\} \). If \(x_3 \) is not adjacent to \(y_1 \) and \(y_2 \), then \(G[\{x_1, x_2, x_3, y_1, y_2, s_1, y_2, s_2\}] = F_{10} \), where \(s_i \in N(y_i) \), which is a contradiction. If \(x_3 \) is adjacent to \(y_1 \) or \(y_2 \), then \(\{y_1, y_2\} \) is a dominating set of \(G \), which is a contradiction.

Case 4.3. \(||N(V(C)) \cap R|| = 1 \). Say \(y_1x_1 \in E(G) \). Since \(\{x_1, y_1\} \) is not a dominating set of \(G \), there is a vertex \(u \) at distance 2 from \(y_1 \) in \(G \). Without loss of generality, we can assume that \(y_1vu \) be a induced path. If there exists a vertex \(t \) such that \(y_1t \in E(G) \). If \(tv \notin E(G) \), then \(G[\{u, v, x_2, y_1, t\}] = F_1 \), which is a contradiction. Suppose that \(tv \in E(G) \). If \(N(t) \setminus \{y_1, v\} \neq \emptyset \), say \(s \in N(t) \setminus \{y_1, v\} \), then \(G[\{t, s, u, v, u, x_1, y_1\}] = F_6 \), which is a contradiction. If \(N(t) \setminus \{y_1, v\} = \emptyset \) or \(d_G(y_1) = 2 \), then \(\{v, x_1\} \) is a dominating set of \(G \), which is a contradiction.

3. Remark

Henning et al. also gave the following conjecture.

Conjecture 2 [5]. The set \(\mathcal{F} \) in Conjecture 1 can be chosen such that \(\gamma(F) = 3 \) and \(\gamma_e(F) = 2 \) for every graph \(F \) in \(\mathcal{F} \).

It is obvious that the conjecture holds for subcubic graphs.

References

Received 11 October 2018
Revised 13 May 2019
Accepted 13 May 2019