DISTANCE MAGIC CARTESIAN PRODUCTS OF GRAPHS

SYLWIA CICHACZa1, DALIBOR FRONCEKb, ELLIOT KROPc

AND

CHRISTOPHER RARIDANc

a AGH University of Science and Technology
Kraków, Poland

b Department of Mathematics and Statistics
University of Minnesota-Duluth, USA

c Department of Mathematics
Clayton State University, USA

e-mail: cichacz@agh.edu.pl
dfroncek@d.umn.edu
ElliotKrop@clayton.edu
ChristopherRaridan@clayton.edu

Abstract

A distance magic labeling of a graph $G = (V,E)$ with $|V| = n$ is a bijection $\ell : V \rightarrow \{1, \ldots, n\}$ such that the weight of every vertex v, computed as the sum of the labels on the vertices in the open neighborhood of v, is a constant.

In this paper, we show that hypercubes with dimension divisible by four are not distance magic. We also provide some positive results by proving necessary and sufficient conditions for the Cartesian product of certain complete multipartite graphs and the cycle on four vertices to be distance magic.

Keywords: distance magic labeling, magic constant, sigma labeling, Cartesian product, hypercube, complete multipartite graph, cycle.

2010 Mathematics Subject Classification: 05C76, 05C78.

References

1Supported by National Science Centre Grant No. 2011/01/D/ST1/04104.

Received 1 September 2014
Revised 19 June 2015
Accepted 19 June 2015