\textbf{P-BIPARTITIONS OF MINOR HEREDITARY PROPERTIES}

\textbf{PIOTR BOROWIECKI}

\textit{Institute of Mathematics}
\textit{Technical University}
\textit{Podgórna 50, 65–246 Zielona Góra, Poland}
\textit{e-mail:} p.borowiecki@im.pz.zgora.pl

\textbf{AND}

\textbf{JAROSLAV IVANČO}

\textit{Department of Geometry and Algebra}
\textit{P.J. Šafárik University}
\textit{Jesenná 5, 041 54 Košice, Slovakaia}
\textit{e-mail:} ivanco@duro.upjs.sk

\textbf{Abstract}

We prove that for any two minor hereditary properties \mathcal{P}_1 and \mathcal{P}_2, such that \mathcal{P}_2 covers \mathcal{P}_1, and for any graph $G \in \mathcal{P}_2$ there is a \mathcal{P}_1-bipartition of G. Some remarks on minimal reducible bounds are also included.

\textbf{Keywords:} minor hereditary property of graphs, generalized colouring, bipartitions of graphs.

\textbf{1991 Mathematics Subject Classification:} 05C70, 05C15.

1. Introduction and Notation

According to [3] we denote by \mathcal{I} the class of all finite simple graphs. A \textit{graph property} is a nonempty isomorphism-closed subclass of \mathcal{I}. We also say that a graph has the property \mathcal{P} if $G \in \mathcal{P}$. For properties $\mathcal{P}_1, \mathcal{P}_2$ of graphs a vertex \textit{$(\mathcal{P}_1, \mathcal{P}_2)$-partition} of a graph G is a partition (V_1, V_2) of $V(G)$ such that the subgraph $G[V_i]$ induced by the set V_i has the property \mathcal{P}_i for each $i = 1, 2$. The class of all vertex $(\mathcal{P}_1, \mathcal{P}_2)$-partitionable graphs is denoted by $\mathcal{P}_1 \circ \mathcal{P}_2$. If $\mathcal{P}_1 = \mathcal{P}_2 = \mathcal{P}$, then a $(\mathcal{P}_1, \mathcal{P}_2)$-partition (as in [4]) we call a \mathcal{P}-\textit{bipartition}.
Let be given a graph $G \in \mathcal{I}$. A contraction of the graph G is a graph obtained from G by repeated contractions of edges, where contraction of an edge (v_1, v_2) of the graph G is obtained by deleting v_1 and v_2 and all incident edges from G and adding a new vertex u and all the edges required to satisfy the following condition $N(u) = N(v_1) \cup N(v_2) \setminus \{v_1, v_2\}$.

A graph H obtained from G by deletions of vertices or edges, or contractions of edges is called a minor of G. So, the graph H is a minor of the graph G if H is a subgraph of G or can be obtained from a subgraph of G by contractions of edges. We express this relation between the graphs H and G by $H < G$.

A property \mathcal{P} of graphs is called minor hereditary (hereditary) if it is closed under minors (subgraphs), i.e., if whenever $G \in \mathcal{P}$ and H is a minor (subgraph) of G, then also $H \in \mathcal{P}$.

Any minor hereditary property \mathcal{P} can be uniquely determined by the set of forbidden minors which can be defined in the following way:

$$\mathcal{F}_M(\mathcal{P}) = \{G \in \mathcal{I} : G \notin \mathcal{P} \text{ but each minor } H \text{ of } G, H \neq G, \text{ belongs to } \mathcal{P}\}.$$

A property \mathcal{P} is called additive if it is closed under disjoint union of graphs, i.e., if for each graph G all of whose connected components have a property \mathcal{P} it follows that G has a property \mathcal{P}, too. It is easy to see that a minor hereditary property \mathcal{P} is additive if and only if all minors $H \in \mathcal{F}_M(\mathcal{P})$ are connected.

Many well-known properties of graphs are both minor hereditary and additive. According to [2], [3] we list some of them to introduce the necessary notions which will be used in the paper. It is convenient to work with an arbitrary nonnegative integer k.

$$\mathcal{O} = \{G \in \mathcal{I} : G \text{ is edgeless, i.e., } E(G) = \emptyset\},$$

$$\mathcal{D}_1 = \{G \in \mathcal{I} : G \text{ is 1-degenerate, i.e., the minimum degree } \delta(H) \leq 1 \text{ for each } H \subseteq G\},$$

$$\mathcal{T}_k = \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_{k+2} \text{ or } K_{\left\lfloor \frac{k+3}{2} \right\rfloor, \left\lceil \frac{k+3}{2} \right\rceil}, k \leq 3\},$$

$$\mathcal{SP} = \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_4\}.$$

We have $\mathcal{D}_1 = \mathcal{T}_1$ to be the class of all forests, \mathcal{T}_2 and \mathcal{T}_3 the class of all outerplanar and all planar graphs, respectively and \mathcal{SP} the class of all series-parallel graphs.

For the properties given above we have:

$$\mathcal{F}_M(\mathcal{O}) = \{K_2\},$$

$$\mathcal{F}_M(\mathcal{D}_1) = \{K_3\},$$
Let us define the next properties.

\[F_M(LF) = \{K_3, K_{1,3}\}, \]
\[F_M(S) = \{K_4, K_{1,3} + K_1\}. \]

All additive minor hereditary (hereditary) properties of graphs, partially ordered by a set-inclusion, form a lattice \(T^a \), \((L^a)\) with \(\cap \) as a meet operation and \(\mathcal{O} \) as the smallest element (see [2]).

All the above listed properties form in \(T^a \) the following chain:

\[\mathcal{O} \subset LF \subset D \subset T_2 \subset S \subset SP \subset T_3. \]

2. \(\mathcal{P} \)-Bipartition Theorem

Definition. Let \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) be two additive minor hereditary properties. We say that \(\mathcal{P}_2 \) covers \(\mathcal{P}_1 \) whenever for every graph \(G_1 \in F_M(\mathcal{P}_1) \) there exists a graph \(G_2 \in F_M(\mathcal{P}_2) \) such that \(G_2 - v \) is a minor of \(G_1 \) for some vertex \(v \in V(G_2) \).

Theorem 1. If \(\mathcal{P}_2 \) covers \(\mathcal{P}_1 \), then the vertex set of a graph \(G \in \mathcal{P}_2 \) can be partitioned into two subsets such that each of them induces a subgraph of \(G \) belonging to \(\mathcal{P}_1 \).

Proof. Let us consider a given graph \(G \in \mathcal{P}_2 \) with an arbitrarily chosen vertex \(v \). It is sufficient to consider a case when \(G \) is connected. We define the subsets \(U_k = \{u \in V(G) : d(v, u) = k\} \), where \(d(u, v) \) is the length of the shortest path between \(v \) and \(u \). Put \(e = \max\{k : U_k \neq \emptyset\} \). Then \(U_0, U_1, \ldots, U_e \) is a partition of \(V(G) \) into \(e + 1 \) pairwise disjoint subsets. Moreover, a subgraph induced by \(U_0 = \{v\} \) belongs to \(\mathcal{P}_1 \). Now, let us assume to the contrary, that one of the subsets \(U_k, k = 1, \ldots, e \), induces a subgraph of \(G \), which is not in \(\mathcal{P}_1 \). Thus there is a minor \(H \) of \(G[U_k] \) belonging to \(F_M(\mathcal{P}_1) \). Since the subgraph of \(G \) induced by \(U' = \bigcup_{i=0}^{k-1} U_i \) is connected and every vertex of \(U_k \) is adjacent to a vertex of \(U_{k-1} \subset U' \), then the graph \(H + K_1 \) is a minor of \(G \). Since \(\mathcal{P}_2 \) covers \(\mathcal{P}_1 \), then \(F_M(\mathcal{P}_2) \) contains a graph \(H' \) such that \(H' - u \) is a minor of \(H \), for some \(u \in V(H') \). Obviously, \(H' \) is a minor of \(H + K_1 \). Hence, since \(H + K_1 \) is a minor of \(G \), then \(H' \) is a minor of \(G \), contrary to \(G \in \mathcal{P}_2 \). Therefore, each of the subsets \(U_i, i = 0, 1, \ldots, e \) induces a subgraph of \(G \) belonging to \(\mathcal{P}_1 \). Since vertices...
$u \in U_i$ and $w \in U_j$, for $|i - j| > 1$ are non-adjacent in G, then both of the sets $V_1 = \bigcup_{i=1}^{\lfloor e/2 \rfloor} U_{2i-1}$ and $V_2 = \bigcup_{i=0}^{\lfloor e/2 \rfloor} U_{2i}$ induce subgraphs of G belonging to P_1, i.e., the partition (V_1, V_2) is the required P_1-bipartition of $V(G)$. ■

From the theorem given above, a series of well-known results follows:

(a) $D_1 \subset O^2$,
(b) $T_2 \subset LF^2$
proven by Mihók [10], Broere and Mynhardt [5], Wang [13], and Goddard [8],
(c) $SP \subset D_1^2$
which is the result of Dirac [7],
(d) $T_3 \subset T_2^2$
proven by Broere and Mynhardt [5], Wang [13] and Poh [12].

The new conclusions can be drawn, too. For the class S defined by $F_M(S) = \{K_4, K_{1,3} + K_1\}$ we have:

(e) $S \subset LF^2$.

3. Minimal Reducible Bounds

An additive hereditary property R is called reducible in L^a, if there exist additive hereditary properties P_1, P_2 such that $P = P_1 \circ P_2$, and it is called irreducible, otherwise.

For a given property P, a reducible property R is called minimal reducible bound for P if $P \subseteq R$ and there is no reducible property $R' \subset R$ satisfying $P \subseteq R'$. The set of all minimal reducible bounds for P will be denoted by $B(P)$. The notion of minimal reducible bounds have been introduced in [11]. In this paper Mihók proved that the class T_2 of outerplanar graphs has exactly two minimal reducible bounds, i.e., $B(T_2) = \{LF^2, O \circ D_1\}$. A similar results for SP and D_2 can be found in [1], namely, $B(SP) = B(D_2) = \{O \circ D_1\}$.

By the transitivity and Mihók’s proof (see [11]) we have the following minimal reducible bounds for the property $S \supset T_2$.

Theorem 2. $B(S) = \{LF^2, O \circ D_1\}$.

References

Received 25 February 1997