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Abstract

Let D = (V, A) be a finite and simple digraph. A k-rainbow dominating
function (kRDF) of a digraph D is a function f from the vertex set V to
the set of all subsets of the set {1,2,...,k} such that for any vertex v € V
with f(v) = 0 the condition U,en- () f(u) = {1,2,..., k} is fulfilled, where
N~ (v) is the set of in-neighbors of v. The weight of a kRDF f is the value
w(f) = 2ev If(v)]. The k-rainbow domination number of a digraph D,
denoted by «,,(D), is the minimum weight of a kRDF of D. The k-rainbow
bondage number b, (D) of a digraph D with maximum in-degree at least two,
is the minimum cardinality of all sets A’ C A for which v, (D—A4") > ~,(D).
In this paper, we establish some bounds for the k-rainbow bondage number
and determine the k-rainbow bondage number of several classes of digraphs.
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1. INTRODUCTION

Let D be a finite simple digraph with vertex set V(D) = V and arc set A(D) = A.
A digraph without directed cycles of length 2 is an oriented graph. The order
n = n(D) of a digraph D is the number of its vertices. We write deg},(v) =
deg™ (v) for the outdegree of a vertex v and degp,(v) = deg™ (v) for its indegree.
The minimum and mazimum indegree and minimum and mazximum outdegree of
D are denoted by 6~ =67 (D), A~ = A~ (D), 6" =§"(D) and AT = AT (D),
respectively. If (u,v) is an arc of D, then we also write u — v, and we say that v
is an out-neighbor of u and wu is an in-neighbor of v. For a vertex v of a digraph
D, we denote the set of in-neighbors and out-neighbors of v by N~ (v) = N (v)
and N*(v) = N} (v), respectively. If X C V(D), then D[X] is the subdigraph
induced by X. If X C V(D) and v € V(D), then E(X,v) is the set of arcs from
X to v. The underlying graph G[D] of a digraph D is the graph obtained by
replacing each arc uv by an edge uv. Note that G[D] has two parallel edges uv
when D contains the arcs (u,v) and (v,u). A digraph D is called connected, if
the underlying graph G[D] is connected. For the notation and terminology not
defined here, we refer the reader to [11].

Let k be a positive integer. A k-rainbow dominating function (kRDF) of
a digraph D is a function f from the vertex set V(D) to the set of all subsets
of the set {1,2,...,k} such that for any vertex v € V(D) with f(v) = () the
condition J,en-(y) f(v) = {1,2,...,k} is fulfilled. The weight of a kRDF f is
the value w(f) = >, cy [f(v)|. The k-rainbow domination number of a digraph
D, denoted by 7,x(D), is the minimum weight of a kRDF of D. A ~,,(D)-
function is a k-rainbow dominating function of D with weight ~,1(D). Note
that +,1(D) is the classical domination number (D). The k-rainbow domination
numbers in digraphs were investigated by Amjadi et al. in [1]. A 2-rainbow
dominating function (briefly, rainbow dominating function) f : V. — P({1,2})
can be represented by the ordered partition (Vy, Vi, V2, Vi 2) (or (Vof, Vlf, V2f, VI{Q)
to refer f) of V, where V) = {v e V| f(v) =0}, Vi ={v e V| f(v) = {1}},
Vo ={veV | flv) ={2}} and V1o = {v € V | f(v) = {1,2}}. In this
representation, its weight is w(f) = |Vi| + |Va| + 2|V 2|.

Proposition A [1]. Let D be a digraph of order n. Then v,2(D) < n if and only
if AY(D) >2 or A=(D) > 2.

Proposition B [1]. Let k > 1 be an integer. If D is a digraph of order n, then
min{k,n} < v4(D) < n.

Proposition C [1]. Let D be a digraph of order n > 2. Then v,2(D) = 2 if and
only ifn =2 orn >3 and AT (D) =n — 1 or there exist two different vertices u
and v such that V(D) — {u,v} € NT(u) and V(D) — {u,v} C NT(v).
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Proposition D [1]. Let k > 1 be an integer. If D is a digraph of order n, then
k(D) <n—AT(D) +k — 1.

The definition of the k-rainbow dominating function for undirected graphs
was introduced by Bresar, Henning, and Rall [2] and has been studied by several
authors (see for example [3, 4, 5, 9, 10, 12, 13)).

Following the ideas in [7], we initiate the study of k-rainbow bondage number
on digraphs D. The k-rainbow bondage number b,;(D) of a digraph D is the
cardinality of a smallest set of arcs A’ C A(D) for which ~,x(D — A") > ~,,(D).
An edge set B with v,1x(D — B) > (D) is called the k-rainbow bondage set. A
by (D)-set is a k-rainbow bondage set of D of size b, (D). If B is a b.(D)-set,
then clearly

(1) 'Yrk(D_B) :7rk(D)+1‘

By Proposition A, we note that if D is a digraph with AT (D) < 1and A= (D) < 1,
then 7,2(D) = n and hence if A" C A(D), then ~,o(D — A’) = 4,2(D). Therefore
the 2-rainbow bondage number is only defined for a digraph with maximum in-
degree or maximum out-degree at least two.

The definition of the k-rainbow bondage number for undirected graphs was
given by Dehgardi, Sheikholeslami and Volkmann [6].

The purpose of this paper is to establish some bounds for the k-rainbow
bondage number of a digraph.

Observation 1. Let D be a digraph of order n with v,;(D) < n. Assume that
H is a spanning subdigraph of D with v, (H) = vx(D). If K = A(D) — A(H),
then by (H) < by (D) < by (H) + |K].

Proof. Let F C A(D) be a bt (D)-set. It follows that v, (H—F) > v, (D—F) >
'yrk(D) = ’yrk(H) and hence brk(H) < |F‘ = brk(D)

Now let F/ C A(H) be a b, (H)-set. We deduce that v, (D — (K U F"))
Yok (H — F') > v, (H) = v1(D) and thus b, (D) < by (H) + |K|.

Observation 2. If a digraph D has a vertex v such that every v, (D)-function
assigns a set of size at least 2 to v, then byp(D) < degt(v) < AT,

Proof. Assume that A is the set of arcs in D with tail v and let f be a y,x(D —

A)-function. Since N;_A+ (v) = 0, we deduce that |f(v)| < 1 and hence f is

not a v (D)-function. Thus v,.x(D — A7) > 4,1(D), and the proof is complete.
|

Theorem 3. Let k be a positive integer and let D be a digraph of order n > k+1.
If the underlying graph of D is connected, then
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Proof. By Proposition B, v,.x(D) > k. We proceed by induction on v,;(D). If
Yk (D) = k, then let u be a vertex in D, and let A, denote the set of arcs incident
with u. Since n > k + 1, we deduce from Proposition B that ~.k(D — A,) =
14+ 7%,(D —u) > k41> (D). This implies that by, (D) < [Ay| = degqp(u)
and hence b,,(D) < A(G[D)).

Now assume that the statement is true for any digraph of order n > k + 1
with k-rainbow domination number k& < 7,,(D) < s. Assume that D is a digraph
of order n > k + 1 with 7,4(D) = s + 1. Suppose to the contrary that b,x(D) >
(v (D) — k + 1)A(G[D]) > A(G[D]). Let u be an arbitrary vertex of D, and
let A, denote the set of arcs incident with w. Then ~,x(D) = vx(D — Ay),
because deggpj(u) < byr(D). Let f be a vx(D — Ay)-function. Obviously,
|f(u)] =1 and the function f restricted to D — u is a y,,(D — u)-function. This
yields v, (D — u) = (D) — 1. It follows from Observation 1 that b, (D) <
bri(D — u) + deggp)(u), and by the induction hypothesis we obtain

bri(D) < brg (D — u) + deggp(u)
<(s—k+1)A(GD —u]) + deggp) (u)
< (s—k+1)A(G[D]) + A(G[D)])
=((s+1) = k+ 1DA(G[D]) = (vk(D) — k + L)A(G[D]).

This contradiction completes the proof. [

2. UPPER BOUNDS ON THE 2-RAINBOW BONDAGE NUMBER

In this section we mainly present bounds on the 2-rainbow bondage number of a
digraph.

Theorem 4. If D is a digraph, and xyz a path of length 2 in G[D] such that
(y,x), (y,2) € A(D), then

(2)  br2(D) < deggp)(@) + deggp)(y) + deggp)(2) —3 — [N~ (2) NN~ (y)|.
Moreover, if x and z are adjacent in G[D], then
(3)  bra(D) < deggpy(x) + deggp)(y) + deggpy(2) =4 — [N~ (z) NN™ ()]

Proof. Let A; be the set of arcs incident with z,y or z with the exception of
(y,z) and all arcs going from N~ (z) N N~ (y) to y. Then

|A1| < deggpy(®) + degap)(y) + deggpy(2) —3 — [N~ (z) N N7 (y)|

and

|A1| < deggp)(®) + deggp)(y) + deggp(2) —4 — [N”(z) N N ()]
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when x and z are adjacent. Now let D1 = D — A;. Obviously in Dy, the vertex
x is isolated, z is a vertex with indegree 1, ¢ is an in-neighbor of z, and all in-
neighbors of y in Dy, if any, are contained in N~ (x). Let f = (Vo, V1, Va2, Vi1 2) be
a Yro(D1)-function. Then |f(z)| =1 and |f(2)| < 1.

If f(z) =0, then f(y) = {1, 2} and therefore (VoU{z}, Vi —{a}, Va—{z}, Vi2)
is a 2RDF on D of weight less than w(f), and consequently (2) as well as (3) are
proved.

Now assume that |f(z)] = 1. If |f(y)| = 1, then (Vo U {2}, Vi — {y, 2z}, V2 —
{y, 2}, Vi2U{y}) is also a v,2(D1)-function, and we are in the situation discussed
in the previous case. However, if f(y) = ), then there exists a vertex w € N~ (z)N
N~ (y) such that f(w) = {1, 2} or there exist two vertices w1, ws € N~ ()N~ (y)
such that f(w;) = {1} and f(w2) = {2}. Since w,w; and wy are in-neighbors of
zin D, (VoU{z},Vi —{z}, Vo — {2}, Vi 2) is a 2RDF on D of weight less than f,
and the proof is complete. |

Theorem 5. If D is a digraph, and xyz a path of length 2 in G[D] such that
(y,x), (y,2z) € A(D), then

(1) bya(D) < degeypy(@) + deg™(y) + degypy () — IN~(2) 1 N~ (5) A N~ (2)].
Moreover, if x and z are adjacent in G[D], then
(5)  br2(D) < deggpy(z) +deg™ (y) +deggp(2) =1 — [N (2) NN~ (y) N N~ (2)].

Proof. Let F be the set of arcs incident with x or z and all arcs terminating in
y except the arcs w — y for which the arcs w — = and w — z also occur in D.
Then

|F| < deggp)(x) + deg™ (y) + deggp)(2) — [N"(z) " N~ (y) NN~ (2)]
and
|F| < deggp(x) + deg™ (y) + deggp)(2) =1 — [N~ () NN~ (y) NN~ (2)|

when z and z are adjacent. Let now D' = D — F. In D’, the vertices z, z are
isolated, and all in-neighbors of y in D’ if any, are contained in N~ (z) N N~ (2).
Let f = (Vo, Vi, V2, Vi2) be a v,2(D’)-function. Then |f(z)| = |f(z)| = 1 and we
may assume, without loss of generality, that f(z) = f(z) = {1}.

If f(y) ={1,2}, then (Vo U {z,2},Vi — {z, 2}, V2, Vi2) is a 2RDF on D of
weight less than w(f), and therefore (4) and (5) are proved.

If | f(y)| = 1, then (Vo U{x, 2}, Vi —{x,y,2}, Vo —{y}, Vi2U{y}) is a 2RDF
on D of weight less than w(f), and the desired bounds are proved.

However, if f(y) = ), then there exists a vertex w € N~ () NN~ (y) NN~ (2)
such that f(w) = {1,2} or there exist two vertices wi, w2 € N~ (x) N N~ (y) N
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N~ (z) such that f(w;) = {1} and f(wa) = {2}. Since w,w; and wy are in-
neighbors of z and z in D, (Vo U {z, 2}, Vi — {z,2}, V2, Vi2) is a 2RDF on D of
weight less than f, and the proof is complete. [

Corollary 6. If D is a digraph with 67 (D) > 2, then bo(D) < 2A(G[D]) +
5-(D).

Proof. Let y € V(D) be a vertex with deg™ (y) = 6 (D). Since 67 (D) > 2,
there exist two different vertices x,z € Nt (y). Thus G[D] contains a path xyz
such that (y, ), (y,z) € A(D). Now the result follows from Theorem 5. |

Since 3 ey (p) deg™ (v) = > vev(pydeg” (v) and 3=, ey (py (deg™ (v)+deg™ (v))
< nA(G[D]), we have 6~ (D) < £A(G[D]). Now, Corollary 6 leads to the next
result.

Corollary 7. If D is a digraph with 57 (D) > 2, then by2(D) < 3A(G[D]).

For every graph G, the expression deg,(G) = ZueV(G) deg(v)/|V(G)] is
called the average degree of G.

Lemma 8. For any digraph D with 6~ (D) > 1, there exists a pair of vertices,
say u and v, that are either adjacent or at distance two in G[D] with a common
in-netghbor in D, with the property that

deggpy(u) + deggp)(v) < 2deg,(G[D]).

Proof. Suppose that the lemma is false, and let D be a connected digraph
where the result does not hold. Let the vertices of degree less than or equal
to deg,(G[D]) in G[D] be S = {u,ug,...,un} and the vertices of degree greater
than deg,(G[D]) be T = {v1,v2,...,v,}.

Observe that no pair of vertices of S can be joined by an arc. Hence, each
u; € S has only vertices in T' as in-neighbors or out-neighbors. Also note that
each v; has at most one out-neighbor in S, for otherwise if there were two, they
would contradict our assumption.

Now we proceed to sum the degrees of all vertices in the underlying graph
G[D] as follows. For each u; € S we consider an in-neighbor v; € T of u; and
take degqpj(ui) + deggpy(vj). By assumption, we observe that deggp)(u:) +
deggp)(v;) > 2deg,(G[D]). Furthermore, by the above remarks, these in-
neighbors in 7" must be distinct. After adding m such pairs (to exhaust 5),
the degree of any remaining members of T" are included. But the total sum of the
degrees is greater than |V (G[D])| deg,(G[D]) which is impossible. This completes
the proof. [

Next we present an upper bound on the size of a digraph with given rainbow
domination number and rainbow bondage number.
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Theorem 9. Let D be a digraph of order n with 6~ (D) > 1, 6T(D) > 2
and rainbow bondage number byo(D). If deg,(G[D]) is the average degree of
the underlying graph of D, then by2(D) < 2deg,(G[D]) + A(G[D]) — 3 and
|AD)| = (n/4)(br2(D) — A(G[D]) + 3).

Proof. Let D be a digraph satisfying the assumptions of the theorem. By Lemma
8, there is at least one pair of vertices, say u and v, that are either adjacent or
at distance 2 from each other with a common in-neighbor, and with the property
that degg(pj(u) + deggp)(v) < 2deg,(G[D]). Since 67 (D) > 2, there is a path
wvw in G[D] such that (v,u), (v,w) € A(D), a path vuw in G[D] such that
(u,v), (u,w) € A(D), or a path uwv in G[D] such that (w,u), (w,v) € A(D).
Since these cases are symmetrical, we only consider the first. Applying Theorem
4, we obtain

bra(D) < deggp)(u) + deggp)(v) + deggpy(w) — 3
< 2deg,(G[D]) + A(G[D]) - 3.

Since 2|E(G[D])| = ndeg,(G[D]), we have
A|E(G[D])| = 2ndeg,(G[D]) = n(by2(D) — A(G[D]) + 3).

Hence
|A(D)| = |E(G[D))| = (n/4)(br2(D) — A(G[D]) + 3).

3. SOME CLASSES OF DIGRAPHS

In this section we investigate complete digraphs, complete bipartite digraphs and
transitive tournaments.

Lemma 10. If K, is the complete bipartite digraph such that ¢ > p > 2k, then
7rk(K;,q) = 2k.

Proof. Let X = {z1,22,...,2p} and Y = {y1,¥2,...,y,} be the partite sets of
K, It is easy to see that the function f defined by f(z;) = f(y;) = {i} for
1 <i<kand f(z) =0 otherwise, is a k-rainbow dominating function of K , of
weight 2k and hence v (K}, ;) < 2k.

Let now f be a v, (K,, ,)-function. If f(x;) # 0 for each i, then ~,1(K, ,) =
w(f) > 2k. So assume f(z;) = 0 for some i, say ¢ = 1. Similarly, we may assume
f(y1) = 0. This implies that J7_, f(z:) = UL, f(vi) = {1,2,...,k}. Hence
Yrk (K, 4) = w(f) = 2k and the proof is complete. |

Theorem 11. Let k > 2 be an integer and let K, be the complete bipartite
digraph such that 2k +1<p <q. Then p+1 < bx(K; ) < 2p.
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Proof. Let X = {x1,29,...,2p} and Y = {y1,¥y2,...,y4} be the partite sets of
K} .- It B is an arc set of K, then define D = K , — B. If D contains a vertex
z € X and a vertex y € Y such that deg},(z) = ¢ and deg},(y) = p, then it follows
from Lemma 10 that 2k = v, (K, ;) < vr.(D) < 2k and therefore v, (D) = 2k.
Hence b,(K,,) > p. Now let |[B| = p and D = K, — B such that, without
loss of generality, deg},(z) # ¢ for all x € X. Then B = {z1yi,, T2Yiy, - - -, TpYiy
with y;; € Y for 1 < j < p. Assume that y;; = y1. Define the function f by
flz1) = f(y1) ={1,2,...,k} and f(u) =0 for u € V(K ,) — {z1,y1}. It is easy
to see that f is a k-rainbow dominating function of D of weight 2k. Lemma 10
implies that 2k = 7,1 (K ;) < vrx(D) < 2k and thus v, (D) = 2k. Consequently,

brk(K;,q) >p+1
Let now Bj be the set of all arcs incident with the vertex y;, and let H =
K, ,— Bi1. Then y; is an isolated vertex in H and thus v, (H) = vk (K, 1) + 1.
Since ¢ > p > 2k +1, Lemma 10 shows that v, (K} ,_1) = 2k and thus v+ (H) =
2k +1. Since | By| = 2p, it follows that b.x (K, ,) < 2p, and the proof is complete.
|

Conjecture 12. For integers k > 2 and ¢ > p > 2k + 1, by (K, ) = 2p.

Theorem 13. Let k > 2 be an integer. If K is the complete digraph of order
n>k+1, thenn <bk(K:) <n+k-—1.

Proof. According to Propositions B and D, we deduce that ~,,(K}) = k. If B
is an arc set of K, then define D = K} — B. If D contains a vertex = such that
degh(z) = n — 1, then it follows from Propositions B and D that ~,4(D) = k.
This implies that b, (K}) > n.

Now let {x1,xa,...,x,} be the vertex set of the complete digraph K. Define
the arc sets By = {x1xy, To%n, ..., Tn_1Tn} and By = {x,z1, Tpxe, ..., TnTk},
and let D = K —(B1UBz). Then it is easy to see that by, (D) = by (K)_)+1 =
k+ 1. Since v, (K}}) = k, we obtain b, (K}) < |Bi|+ |B2| = n — 1+ k, and this
is the desired upper bound. [

Theorem 14. If K is the complete digraph of order n > 3, then b, (D) =
b (KX ) +1=k+1.

Proof. By Theorem 13, we have byo(K) > n.

Now let {z1,x9,...,2,} be the vertex set of K. We define the arc set B of
K} by B = {z129, 2223, ...,Tpn_1Tn, Tpx1}. If D = K} — B, then we observe that
AT(D) =n—2. In addition, we see that there do not exist two different vertices
u and v in D such that V(D) — {u,v} € N (u) and V(D) — {u,v} € N} (v).
This can be seen as follows:

Suppose on the contrary that there exist two different vertices u and v in
D such that V(D) — {u,v} € N (u) and V(D) — {u,v} C N (v). If, without
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loss of generality, u = x1, then xy ¢ Ng(xl). Therefore v = x2. However, now
z3 & Nj)(22), a contradiction.

Applying Proposition C, we conclude that v,2(D) > 3. Since y,2(K}) = 2,
we deduce that by2(K}) < n, and the proof is complete. |

A tournament T = (V, E) is an orientation of a complete graph. A tourna-
ment is called transitive if p — ¢ and ¢ — r imply that p — 7.

Theorem 15. Let k > 2 be an integer. If T, is the transitive tournament of
order n > k + 1, then b, (T),) = 1.

Proof. Let x1xo---x, be the unique directed Hamiltonian path of 7,. Then
degr}rn (z1) = n — 1, and therefore Propositions B and D imply that ~,x(7},) = k.
Now let D =T, — {z12,}, and let f be a v, (D)-function.

Assume first that f(x,)=0. This implies that UueN,; (@n) fu)={1,2,...,k}.

Since |f(x1)| > 1 and x1 € N (xy), we obtain w(f) >k + 1.

Next, assume that |f(z,)| > 1. If |f(z;)| > 1 for each 1 < i < n — 1, then
w(f) >n > k+1. So assume that f(z; =0 for an index i € {1,2,...,n — 1}.
Thejn UueNg(z,-) f(u) ={1,2,...,k}. Since ,, € N (z;), we obtain w(f) > k+1
again.

Therefore v,,(D) > k + 1. Since 7,x(T,) = k, we deduce that b.(T},) = 1,
and the proof is complete. [
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