
Discussiones Mathematicae
Graph Theory 35 (2015) 261–270
doi:10.7151/dmgt.1797

THE k-RAINBOW BONDAGE NUMBER

OF A DIGRAPH

Jafar Amjadi, Negar Mohammadi

Seyed Mahmoud Sheikholeslami

Department of Mathematics

Azarbaijan Shahid Madani University

Tabriz, I.R. Iran

e-mail: {j-amjadi;s.m.sheikholeslami}@azaruniv.edu

and

Lutz Volkmann

Lehrstuhl II für Mathematik

RWTH Aachen University

52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let D = (V,A) be a finite and simple digraph. A k-rainbow dominating

function (kRDF) of a digraph D is a function f from the vertex set V to
the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V
with f(v) = ∅ the condition

⋃
u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where

N−(v) is the set of in-neighbors of v. The weight of a kRDF f is the value
ω(f) =

∑
v∈V

|f(v)|. The k-rainbow domination number of a digraph D,
denoted by γrk(D), is the minimum weight of a kRDF of D. The k-rainbow
bondage number brk(D) of a digraphD with maximum in-degree at least two,
is the minimum cardinality of all setsA′ ⊆ A for which γrk(D−A′) > γrk(D).
In this paper, we establish some bounds for the k-rainbow bondage number
and determine the k-rainbow bondage number of several classes of digraphs.
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1. Introduction

Let D be a finite simple digraph with vertex set V (D) = V and arc set A(D) = A.
A digraph without directed cycles of length 2 is an oriented graph. The order
n = n(D) of a digraph D is the number of its vertices. We write deg+D(v) =
deg+(v) for the outdegree of a vertex v and deg−D(v) = deg−(v) for its indegree.
The minimum and maximum indegree and minimum and maximum outdegree of
D are denoted by δ− = δ−(D), ∆− = ∆−(D), δ+ = δ+(D) and ∆+ = ∆+(D),
respectively. If (u, v) is an arc of D, then we also write u → v, and we say that v
is an out-neighbor of u and u is an in-neighbor of v. For a vertex v of a digraph
D, we denote the set of in-neighbors and out-neighbors of v by N−(v) = N−

D (v)
and N+(v) = N+

D (v), respectively. If X ⊆ V (D), then D[X] is the subdigraph
induced by X. If X ⊆ V (D) and v ∈ V (D), then E(X, v) is the set of arcs from
X to v. The underlying graph G[D] of a digraph D is the graph obtained by
replacing each arc uv by an edge uv. Note that G[D] has two parallel edges uv
when D contains the arcs (u, v) and (v, u). A digraph D is called connected, if
the underlying graph G[D] is connected. For the notation and terminology not
defined here, we refer the reader to [11].

Let k be a positive integer. A k-rainbow dominating function (kRDF) of
a digraph D is a function f from the vertex set V (D) to the set of all subsets
of the set {1, 2, . . . , k} such that for any vertex v ∈ V (D) with f(v) = ∅ the
condition

⋃
u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is

the value ω(f) =
∑

v∈V |f(v)|. The k-rainbow domination number of a digraph
D, denoted by γrk(D), is the minimum weight of a kRDF of D. A γrk(D)-
function is a k-rainbow dominating function of D with weight γrk(D). Note
that γr1(D) is the classical domination number γ(D). The k-rainbow domination
numbers in digraphs were investigated by Amjadi et al. in [1]. A 2-rainbow
dominating function (briefly, rainbow dominating function) f : V −→ P({1, 2})

can be represented by the ordered partition (V0, V1, V2, V1,2) (or (V
f
0 , V f

1 , V f
2 , V f

1,2)
to refer f) of V , where V0 = {v ∈ V | f(v) = ∅}, V1 = {v ∈ V | f(v) = {1}},
V2 = {v ∈ V | f(v) = {2}} and V1,2 = {v ∈ V | f(v) = {1, 2}}. In this
representation, its weight is ω(f) = |V1|+ |V2|+ 2|V1,2|.

Proposition A [1]. Let D be a digraph of order n. Then γr2(D) < n if and only

if ∆+(D) ≥ 2 or ∆−(D) ≥ 2.

Proposition B [1]. Let k ≥ 1 be an integer. If D is a digraph of order n, then

min{k, n} ≤ γrk(D) ≤ n.

Proposition C [1]. Let D be a digraph of order n ≥ 2. Then γr2(D) = 2 if and

only if n = 2 or n ≥ 3 and ∆+(D) = n− 1 or there exist two different vertices u
and v such that V (D)− {u, v} ⊆ N+(u) and V (D)− {u, v} ⊆ N+(v).
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Proposition D [1]. Let k ≥ 1 be an integer. If D is a digraph of order n, then

γrk(D) ≤ n−∆+(D) + k − 1.

The definition of the k-rainbow dominating function for undirected graphs
was introduced by Brešar, Henning, and Rall [2] and has been studied by several
authors (see for example [3, 4, 5, 9, 10, 12, 13]).

Following the ideas in [7], we initiate the study of k-rainbow bondage number
on digraphs D. The k-rainbow bondage number brk(D) of a digraph D is the
cardinality of a smallest set of arcs A′ ⊆ A(D) for which γrk(D − A′) > γrk(D).
An edge set B with γrk(D −B) > γrk(D) is called the k-rainbow bondage set. A
brk(D)-set is a k-rainbow bondage set of D of size brk(D). If B is a brk(D)-set,
then clearly

(1) γrk(D −B) = γrk(D) + 1.

By Proposition A, we note that ifD is a digraph with ∆+(D) ≤ 1 and ∆−(D) ≤ 1,
then γr2(D) = n and hence if A′ ⊆ A(D), then γr2(D −A′) = γr2(D). Therefore
the 2-rainbow bondage number is only defined for a digraph with maximum in-
degree or maximum out-degree at least two.

The definition of the k-rainbow bondage number for undirected graphs was
given by Dehgardi, Sheikholeslami and Volkmann [6].

The purpose of this paper is to establish some bounds for the k-rainbow
bondage number of a digraph.

Observation 1. Let D be a digraph of order n with γrk(D) < n. Assume that

H is a spanning subdigraph of D with γrk(H) = γrk(D). If K = A(D) − A(H),
then brk(H) ≤ brk(D) ≤ brk(H) + |K|.

Proof. Let F ⊆ A(D) be a brk(D)-set. It follows that γrk(H−F ) ≥ γrk(D−F ) >
γrk(D) = γrk(H) and hence brk(H) ≤ |F | = brk(D).

Now let F ′ ⊆ A(H) be a brk(H)-set. We deduce that γrk(D − (K ∪ F ′)) =
γrk(H − F ′) > γrk(H) = γrk(D) and thus brk(D) ≤ brk(H) + |K|.

Observation 2. If a digraph D has a vertex v such that every γrk(D)-function
assigns a set of size at least 2 to v, then brk(D) ≤ deg+(v) ≤ ∆+.

Proof. Assume that A+
v is the set of arcs in D with tail v and let f be a γrk(D−

A+
v )-function. Since N+

D−A+
v

(v) = ∅, we deduce that |f(v)| ≤ 1 and hence f is

not a γrk(D)-function. Thus γrk(D −A+
v ) > γrk(D), and the proof is complete.

Theorem 3. Let k be a positive integer and let D be a digraph of order n ≥ k+1.
If the underlying graph of D is connected, then

brk(D) ≤ (γrk(D)− k + 1)∆(G[D]).
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Proof. By Proposition B, γrk(D) ≥ k. We proceed by induction on γrk(D). If
γrk(D) = k, then let u be a vertex in D, and let Au denote the set of arcs incident
with u. Since n ≥ k + 1, we deduce from Proposition B that γrk(D − Au) =
1 + γrk(D − u) ≥ k + 1 > γrk(D). This implies that brk(D) ≤ |Au| = degG[D](u)
and hence brk(D) ≤ ∆(G[D]).

Now assume that the statement is true for any digraph of order n ≥ k + 1
with k-rainbow domination number k ≤ γrk(D) ≤ s. Assume that D is a digraph
of order n ≥ k + 1 with γrk(D) = s+ 1. Suppose to the contrary that brk(D) >
(γrk(D) − k + 1)∆(G[D]) > ∆(G[D]). Let u be an arbitrary vertex of D, and
let Au denote the set of arcs incident with u. Then γrk(D) = γrk(D − Au),
because degG[D](u) < brk(D). Let f be a γrk(D − Au)-function. Obviously,
|f(u)| = 1 and the function f restricted to D − u is a γrk(D − u)-function. This
yields γrk(D − u) = γrk(D) − 1. It follows from Observation 1 that brk(D) ≤
brk(D − u) + degG[D](u), and by the induction hypothesis we obtain

brk(D)≤ brk(D − u) + degG[D](u)

≤ (s− k + 1)∆(G[D − u]) + degG[D](u)

≤ (s− k + 1)∆(G[D]) + ∆(G[D])

= ((s+ 1)− k + 1)∆(G[D]) = (γrk(D)− k + 1)∆(G[D]).

This contradiction completes the proof.

2. Upper Bounds on the 2-Rainbow Bondage Number

In this section we mainly present bounds on the 2-rainbow bondage number of a
digraph.

Theorem 4. If D is a digraph, and xyz a path of length 2 in G[D] such that

(y, x), (y, z) ∈ A(D), then

(2) br2(D) ≤ degG[D](x) + degG[D](y) + degG[D](z)− 3− |N−(x) ∩N−(y)|.

Moreover, if x and z are adjacent in G[D], then

(3) br2(D) ≤ degG[D](x) + degG[D](y) + degG[D](z)− 4− |N−(x) ∩N−(y)|.

Proof. Let A1 be the set of arcs incident with x, y or z with the exception of
(y, z) and all arcs going from N−(x) ∩N−(y) to y. Then

|A1| ≤ degG[D](x) + degG[D](y) + degG[D](z)− 3− |N−(x) ∩N−(y)|

and

|A1| ≤ degG[D](x) + degG[D](y) + degG[D](z)− 4− |N−(x) ∩N−(y)|
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when x and z are adjacent. Now let D1 = D − A1. Obviously in D1, the vertex
x is isolated, z is a vertex with indegree 1, y is an in-neighbor of z, and all in-
neighbors of y in D1, if any, are contained in N−(x). Let f = (V0, V1, V2, V1,2) be
a γr2(D1)-function. Then |f(x)| = 1 and |f(z)| ≤ 1.

If f(z) = ∅, then f(y) = {1, 2} and therefore (V0∪{x}, V1−{x}, V2−{x}, V1,2)
is a 2RDF on D of weight less than ω(f), and consequently (2) as well as (3) are
proved.

Now assume that |f(z)| = 1. If |f(y)| = 1, then (V0 ∪ {z}, V1 − {y, z}, V2 −
{y, z}, V1,2∪{y}) is also a γr2(D1)-function, and we are in the situation discussed
in the previous case. However, if f(y) = ∅, then there exists a vertex w ∈ N−(x)∩
N−(y) such that f(w) = {1, 2} or there exist two vertices w1, w2 ∈ N−(x)∩N−(y)
such that f(w1) = {1} and f(w2) = {2}. Since w,w1 and w2 are in-neighbors of
x in D, (V0 ∪ {x}, V1 −{x}, V2 −{x}, V1,2) is a 2RDF on D of weight less than f ,
and the proof is complete.

Theorem 5. If D is a digraph, and xyz a path of length 2 in G[D] such that
(y, x), (y, z) ∈ A(D), then

(4) br2(D) ≤ degG[D](x) + deg−(y) + degG[D](z)− |N−(x) ∩N−(y) ∩N−(z)|.

Moreover, if x and z are adjacent in G[D], then

(5) br2(D) ≤ degG[D](x) + deg−(y) + degG[D](z)− 1− |N−(x) ∩N−(y) ∩N−(z)|.

Proof. Let F be the set of arcs incident with x or z and all arcs terminating in
y except the arcs w → y for which the arcs w → x and w → z also occur in D.
Then

|F | ≤ degG[D](x) + deg−(y) + degG[D](z)− |N−(x) ∩N−(y) ∩N−(z)|

and

|F | ≤ degG[D](x) + deg−(y) + degG[D](z)− 1− |N−(x) ∩N−(y) ∩N−(z)|

when x and z are adjacent. Let now D′ = D − F . In D′, the vertices x, z are
isolated, and all in-neighbors of y in D′, if any, are contained in N−(x)∩N−(z).
Let f = (V0, V1, V2, V1,2) be a γr2(D

′)-function. Then |f(x)| = |f(z)| = 1 and we
may assume, without loss of generality, that f(x) = f(z) = {1}.

If f(y) = {1, 2}, then (V0 ∪ {x, z}, V1 − {x, z}, V2, V1,2) is a 2RDF on D of
weight less than ω(f), and therefore (4) and (5) are proved.

If |f(y)| = 1, then (V0 ∪ {x, z}, V1 − {x, y, z}, V2 − {y}, V1,2 ∪ {y}) is a 2RDF
on D of weight less than ω(f), and the desired bounds are proved.

However, if f(y) = ∅, then there exists a vertex w ∈ N−(x)∩N−(y)∩N−(z)
such that f(w) = {1, 2} or there exist two vertices w1, w2 ∈ N−(x) ∩ N−(y) ∩
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N−(z) such that f(w1) = {1} and f(w2) = {2}. Since w,w1 and w2 are in-
neighbors of x and z in D, (V0 ∪ {x, z}, V1 − {x, z}, V2, V1,2) is a 2RDF on D of
weight less than f , and the proof is complete.

Corollary 6. If D is a digraph with δ+(D) ≥ 2, then br2(D) ≤ 2∆(G[D]) +
δ−(D).

Proof. Let y ∈ V (D) be a vertex with deg−(y) = δ−(D). Since δ+(D) ≥ 2,
there exist two different vertices x, z ∈ N+(y). Thus G[D] contains a path xyz
such that (y, x), (y, z) ∈ A(D). Now the result follows from Theorem 5.

Since
∑

v∈V (D) deg
+(v) =

∑
v∈V (D) deg

−(v) and
∑

v∈V (D)(deg
+(v)+deg−(v))

≤ n∆(G[D]), we have δ−(D) ≤ 1
2∆(G[D]). Now, Corollary 6 leads to the next

result.

Corollary 7. If D is a digraph with δ+(D) ≥ 2, then br2(D) ≤ 5
2∆(G[D]).

For every graph G, the expression dega(G) =
∑

v∈V (G) deg(v)/|V (G)| is
called the average degree of G.

Lemma 8. For any digraph D with δ−(D) ≥ 1, there exists a pair of vertices,

say u and v, that are either adjacent or at distance two in G[D] with a common

in-neighbor in D, with the property that

degG[D](u) + degG[D](v) ≤ 2 dega(G[D]).

Proof. Suppose that the lemma is false, and let D be a connected digraph
where the result does not hold. Let the vertices of degree less than or equal
to dega(G[D]) in G[D] be S = {u1, u2, . . . , um} and the vertices of degree greater
than dega(G[D]) be T = {v1, v2, . . . , vn}.

Observe that no pair of vertices of S can be joined by an arc. Hence, each
ui ∈ S has only vertices in T as in-neighbors or out-neighbors. Also note that
each vj has at most one out-neighbor in S, for otherwise if there were two, they
would contradict our assumption.

Now we proceed to sum the degrees of all vertices in the underlying graph
G[D] as follows. For each ui ∈ S we consider an in-neighbor vj ∈ T of ui and
take degG[D](ui) + degG[D](vj). By assumption, we observe that degG[D](ui) +
degG[D](vj) > 2 dega(G[D]). Furthermore, by the above remarks, these in-
neighbors in T must be distinct. After adding m such pairs (to exhaust S),
the degree of any remaining members of T are included. But the total sum of the
degrees is greater than |V (G[D])| dega(G[D]) which is impossible. This completes
the proof.

Next we present an upper bound on the size of a digraph with given rainbow
domination number and rainbow bondage number.



The k-Rainbow Bondage Number of a Digraph 267

Theorem 9. Let D be a digraph of order n with δ−(D) ≥ 1, δ+(D) ≥ 2
and rainbow bondage number br2(D). If dega(G[D]) is the average degree of

the underlying graph of D, then br2(D) ≤ 2 dega(G[D]) + ∆(G[D]) − 3 and

|A(D)| ≥ (n/4)(br2(D)−∆(G[D]) + 3).

Proof. LetD be a digraph satisfying the assumptions of the theorem. By Lemma
8, there is at least one pair of vertices, say u and v, that are either adjacent or
at distance 2 from each other with a common in-neighbor, and with the property
that degG[D](u) + degG[D](v) ≤ 2 dega(G[D]). Since δ+(D) ≥ 2, there is a path
uvw in G[D] such that (v, u), (v, w) ∈ A(D), a path vuw in G[D] such that
(u, v), (u,w) ∈ A(D), or a path uwv in G[D] such that (w, u), (w, v) ∈ A(D).
Since these cases are symmetrical, we only consider the first. Applying Theorem
4, we obtain

br2(D) ≤ degG[D](u) + degG[D](v) + degG[D](w)− 3

≤ 2 dega(G[D]) + ∆(G[D])− 3.

Since 2|E(G[D])| = n dega(G[D]), we have

4|E(G[D])| = 2n dega(G[D]) ≥ n(br2(D)−∆(G[D]) + 3).

Hence
|A(D)| = |E(G[D])| ≥ (n/4)(br2(D)−∆(G[D]) + 3).

3. Some Classes of Digraphs

In this section we investigate complete digraphs, complete bipartite digraphs and
transitive tournaments.

Lemma 10. If K∗

p,q is the complete bipartite digraph such that q ≥ p ≥ 2k, then
γrk(K

∗

p,q) = 2k.

Proof. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq} be the partite sets of
K∗

p,q. It is easy to see that the function f defined by f(xi) = f(yi) = {i} for
1 ≤ i ≤ k and f(x) = ∅ otherwise, is a k-rainbow dominating function of K∗

p,q of
weight 2k and hence γrk(K

∗

p,q) ≤ 2k.
Let now f be a γrk(K

∗

p,q)-function. If f(xi) 6= ∅ for each i, then γrk(K
∗

p,q) =
ω(f) ≥ 2k. So assume f(xi) = ∅ for some i, say i = 1. Similarly, we may assume
f(y1) = ∅. This implies that

⋃p
i=1 f(xi) =

⋃q
i=1 f(yi) = {1, 2, . . . , k}. Hence

γrk(K
∗

p,q) = ω(f) ≥ 2k and the proof is complete.

Theorem 11. Let k ≥ 2 be an integer and let K∗

p,q be the complete bipartite

digraph such that 2k + 1 ≤ p ≤ q. Then p+ 1 ≤ brk(K
∗

p,q) ≤ 2p.



268 J. Amjadi, N. Mohammadi, S.M. Sheikholeslami and L. Volkmann

Proof. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq} be the partite sets of
K∗

p,q. If B is an arc set of K∗

p,q, then define D = K∗

p,q −B. If D contains a vertex

x ∈ X and a vertex y ∈ Y such that deg+D(x) = q and deg+D(y) = p, then it follows
from Lemma 10 that 2k = γrk(K

∗

p,q) ≤ γrk(D) ≤ 2k and therefore γrk(D) = 2k.
Hence brk(K

∗

p,q) ≥ p. Now let |B| = p and D = K∗

p,q − B such that, without

loss of generality, deg+D(x) 6= q for all x ∈ X. Then B = {x1yi1 , x2yi2 , . . . , xpyip}
with yij ∈ Y for 1 ≤ j ≤ p. Assume that yi1 = y1. Define the function f by
f(x1) = f(y1) = {1, 2, . . . , k} and f(u) = ∅ for u ∈ V (K∗

p,q)− {x1, y1}. It is easy
to see that f is a k-rainbow dominating function of D of weight 2k. Lemma 10
implies that 2k = γrk(K

∗

p,q) ≤ γrk(D) ≤ 2k and thus γrk(D) = 2k. Consequently,
brk(K

∗

p,q) ≥ p+ 1.
Let now B1 be the set of all arcs incident with the vertex y1, and let H =

K∗

p,q−B1. Then y1 is an isolated vertex in H and thus γrk(H) = γrk(K
∗

p,q−1)+1.
Since q ≥ p ≥ 2k+1, Lemma 10 shows that γrk(K

∗

p,q−1) = 2k and thus γrk(H) =
2k+1. Since |B1| = 2p, it follows that brk(K

∗

p,q) ≤ 2p, and the proof is complete.

Conjecture 12. For integers k ≥ 2 and q ≥ p ≥ 2k + 1, brk(K
∗

p,q) = 2p.

Theorem 13. Let k ≥ 2 be an integer. If K∗

n is the complete digraph of order

n ≥ k + 1, then n ≤ brk(K
∗

n) ≤ n+ k − 1.

Proof. According to Propositions B and D, we deduce that γrk(K
∗

n) = k. If B
is an arc set of K∗

n, then define D = K∗

n −B. If D contains a vertex x such that
deg+D(x) = n − 1, then it follows from Propositions B and D that γrk(D) = k.
This implies that brk(K

∗

n) ≥ n.
Now let {x1, x2, . . . , xn} be the vertex set of the complete digraph K∗

n. Define
the arc sets B1 = {x1xn, x2xn, . . . , xn−1xn} and B2 = {xnx1, xnx2, . . . , xnxk},
and let D = K∗

n−(B1∪B2). Then it is easy to see that brk(D) = brk(K
∗

n−1)+1 =
k + 1. Since γrk(K

∗

n) = k, we obtain brk(K
∗

n) ≤ |B1|+ |B2| = n− 1 + k, and this
is the desired upper bound.

Theorem 14. If K∗

n is the complete digraph of order n ≥ 3, then brk(D) =
brk(K

∗

n−1) + 1 = k + 1.

Proof. By Theorem 13, we have br2(K
∗

n) ≥ n.
Now let {x1, x2, . . . , xn} be the vertex set of K∗

n. We define the arc set B of
K∗

n by B = {x1x2, x2x3, . . . , xn−1xn, xnx1}. If D = K∗

n−B, then we observe that
∆+(D) = n− 2. In addition, we see that there do not exist two different vertices
u and v in D such that V (D) − {u, v} ⊆ N+

D (u) and V (D) − {u, v} ⊆ N+
D (v).

This can be seen as follows:
Suppose on the contrary that there exist two different vertices u and v in

D such that V (D) − {u, v} ⊆ N+
D (u) and V (D) − {u, v} ⊆ N+

D (v). If, without
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loss of generality, u = x1, then x2 6∈ N+
D (x1). Therefore v = x2. However, now

x3 6∈ N+
D (x2), a contradiction.

Applying Proposition C, we conclude that γr2(D) ≥ 3. Since γr2(K
∗

n) = 2,
we deduce that br2(K

∗

n) ≤ n, and the proof is complete.

A tournament T = (V,E) is an orientation of a complete graph. A tourna-
ment is called transitive if p → q and q → r imply that p → r.

Theorem 15. Let k ≥ 2 be an integer. If Tn is the transitive tournament of

order n ≥ k + 1, then brk(Tn) = 1.

Proof. Let x1x2 · · ·xn be the unique directed Hamiltonian path of Tn. Then
deg+Tn

(x1) = n− 1, and therefore Propositions B and D imply that γrk(Tn) = k.
Now let D = Tn − {x1xn}, and let f be a γrk(D)-function.

Assume first that f(xn)=∅. This implies that
⋃

u∈N−

D
(xn)

f(u)={1, 2, . . . , k}.

Since |f(x1)| ≥ 1 and x1 6∈ N−

D (xn), we obtain ω(f) ≥ k + 1.

Next, assume that |f(xn)| ≥ 1. If |f(xi)| ≥ 1 for each 1 ≤ i ≤ n − 1, then
ω(f) ≥ n ≥ k + 1. So assume that f(xi = ∅ for an index i ∈ {1, 2, . . . , n − 1}.
Then

⋃
u∈N−

D
(xi)

f(u) = {1, 2, . . . , k}. Since xn 6∈ N−

D (xi), we obtain ω(f) ≥ k+1

again.

Therefore γrk(D) ≥ k + 1. Since γrk(Tn) = k, we deduce that brk(Tn) = 1,
and the proof is complete.
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