Article in press
Authors:
Title:
Connectivity and matching extendability of optimal 1-embedded graphs on the torus
PDFSource:
Discussiones Mathematicae Graph Theory
Received: 2025-04-10 , Revised: 2025-09-19 , Accepted: 2025-09-19 , Available online: 2025-10-29 , https://doi.org/10.7151/dmgt.2609
Abstract:
In this paper, we discuss optimal $1$-toroidal graphs (abbreviated as O1TG),
which are drawn on the torus so that every edge crosses another edge at most
once, and has $n$ vertices and exactly $4n$ edges. We first consider
connectivity of O1TGs, and give the characterization of O1TGs having
connectivity exactly $k$ for each $k\in \{4, 5, 6, 8\}$. In our argument, we
also show that there exists no O1TG having connectivity exactly $7$.
Furthermore, using the result above, we discuss extendability of matchings, and
give the characterization of $1$-, $2$- and $3$-extendable O1TGs in turn.
Keywords:
1-embeddable graph, torus, connectivity, perfect matching
References:
- R.E.L. Aldred, K. Kawarabayashi and M.D. Plummer, On the matching extendability of graphs in surfaces, J. Combin. Theory Ser. B 98 (2008) 105–115.
https://doi.org/10.1016/j.jctb.2007.06.001 - R.E.L. Aldred and M.D. Plummer, Proximity thresholds for matching extension in planar and projective planar triangulations, J. Graph Theory 67 (2011) 38–46.
https://doi.org/10.1002/jgt.20511 - A. Altshuler, Hamilton circuits in some maps on the torus, Discrete Math. 1 (1972) 299–314.
https://doi.org/10.1016/0012-365X(72)90037-4 - J. Fujisawa, K. Segawa and Y. Suzuki, The matching extendability of optimal $1$-planar graphs, Graphs Combin. 34 (2018) 1089–1099.
https://doi.org/10.1007/s00373-018-1932-6 - K. Kawarabayashi, S. Negami, M.D. Plummer and Y. Suzuki, The $2$-extendability of $5$-connected graphs on surfaces with large representativity, J. Combin. Theory Ser. B 101 (2011) 206–213.
https://doi.org/10.1016/j.jctb.2011.02.001 - S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on $1$-planarity, Comput. Sci. Rev. 25 (2017) 49–67.
https://doi.org/10.1016/j.cosrev.2017.06.002 - S. Koizumi and Y. Suzuki, The matching extendability of optimal $1$-embedded graphs on the projective plane, Discuss. Math. Graph Theory 45 (2025) 1233–1248.
https://doi.org/10.7151/dmgt.2581 - T. Nagasawa, K. Noguchi and Y. Suzuki, Optimal $1$-embedded graphs on the projective plane which triangulate other surfaces, J. Nonlinear Convex Anal. 19 (2018) 1759–1770.
- A. Nakamoto, Triangulations and Quadrangulations of Surfaces, Ph.D Thesis (Keio University, 1996).
- A. Nakamoto and S. Negami, Full-symmetric embeddings of graphs on closed surfaces, Mem. Osaka Kyoiku Univ. Ser. III 49 (2000) 1–15.
- S. Negami, Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44 (1983) 161–180.
https://doi.org/10.1016/0012-365X(83)90057-2 - S. Negami, Uniqueness and Faithfulness of Embedding of Graphs into Surfaces, Ph.D Thesis (Tokyo Institute of Technology, 1985).
- M.D. Plummer, A theorem on matchings in the plane, Ann. Discrete Math. 41 (1988) 347–354.
https://doi.org/10.1016/S0167-5060(08)70473-4 - M.D. Plummer, Extending matchings in planar graphs IV, Discrete Math. 109 (1992) 207–219.
https://doi.org/10.1016/0012-365X(92)90292-N - M.D. Plummer, Recent progress in matching extension, in: Building Bridges, Bolyai Soc. Math. Stud. 19, (Berlin, Springer-Verlag 2008) 427–454.
https://doi.org/10.1007/978-3-540-85221-6\_14 - G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117.
https://doi.org/10.1007/BF02996313 - Y. Suzuki, $K_7$-minors in optimal $1$-planar graphs, Discrete Math. 340 (2017) 1227–1234.
https://doi.org/10.1016/j.disc.2017.01.022 - Y. Suzuki, Generating polyhedral quadrangulations of the projective plane, Ars Math. Contemp. 19 (2019) 153–183.
https://doi.org/10.26493/1855-3974.1195.c71 - Y. Suzuki, $1$-planar graphs, in: Beyond Planar Graphs, S.H. Hong and T. Tokuyama (Ed(s)), (Springer, Singapore 2020) 47–68.
https://doi.org/10.1007/978-981-15-6533-5_4 - K. Sone and Y. Suzuki, Optimal $1$-planar multigraphs, Discrete Math. 346 (2023) 113553.
https://doi.org/10.1016/j.disc.2023.113553
Close
