DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M.G. Cornet

María Gracia Cornet

Depto. de Matemática, Facultad de Ciencias Exactas, Ing. y Agrimensura, Universidad Nacional de Rosario

email: mgracia@fceia.unr.edu.ar

0009-0005-4853-1366

P. Torres

Pablo Torres

Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario.
CONICET.

email: ptorres@fceia.unr.edu.ar

0009-0005-5871-6532

Title:

$k$-tuple domination in Kneser graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-08-28 , Revised: 2025-09-17 , Accepted: 2025-09-17 , Available online: 2025-10-29 , https://doi.org/10.7151/dmgt.2608

Abstract:

Given a positive integer $k$, a $k$-tuple dominating set of a graph $G$ is a subset of vertices $D\subseteq V(G)$ such that every vertex of $G$ has at least $k$ neighbors in $D$. The $k$-tuple domination number of $G$, denoted $\gamma_{× k}(G)$, is the minimum cardinality of a $k$-tuple dominating set of $G$. In this paper we determine all the minimum $k$-tuple dominating sets for the Kneser graphs $K(n,r)$ with $n$ large enough with respect to $r$. In addition, we relate $k$-tuple dominating sets and $2$-packings in Kneser graphs, and we compute the $2$-packing number of $K(3r-2,r)$ for $r\geq3$. Finally, we obtain minimum sized $k$-tuple dominating sets of $K(n,2)$ for $n\geq \Theta(\sqrt{k})$.

Keywords:

Kneser graphs, multiple domination, $k$-tuple domination, $2$-packings

References:

  1. J.A. Barrau, On the combinatory problem of Steiner, in: Proc. Sect. Sci. Konink. Akad. Wetensch. 11, (Amsterdam 1908) 352–360.
  2. N. Biggs, Some odd graph theory, Ann. New York Acad. Sci. 319 (1979) 71–81.
    https://doi.org/10.1111/j.1749-6632.1979.tb32775.x
  3. D. Božović, A. Kelenc, I. Peterin and I.G. Yero, Incidence dimension and $2$-packing number in graphs, RAIRO Oper. Res. 56 (2022) 199–211.
    https://doi.org/10.1051/ro/2022001
  4. B. Brešar, T. Kos and P.D. Torres, Grundy domination and zero forcing in Kneser graphs, Ars Math. Contemp. 17 (2019) 419–430.
    https://doi.org/10.26493/1855-3974.1881.384
  5. B. Brešar, T. Dravec, M.G. Cornet and M.A. Henning, $k$-Domination invariants on Kneser graphs, Ars Math. Contemp. 25 (2025) P4.02.
    https://doi.org/10.26493/1855-3974.3294.7fd
  6. A. Cabrera Mart\i nez, A note on the $k$-tuple domination number of graphs, Ars Math. Contemp. 22 (2022) P4.03.
    https://doi.org/10.26493/1855-3974.2600.dcc
  7. G.J. Chang, The upper bound on $k$-tuple domination numbers of graphs, European J. Combin. 29 (2008) 1333–1336.
    https://doi.org/10.1016/j.ejc.2007.05.009
  8. N.E. Clarke and R.P. Gallant, On $2$-limited packings of complete grid graphs, Discrete Math. 340 (2017) 1705–1715.
    https://doi.org/10.1016/j.disc.2016.11.001
  9. M.G. Cornet and P. Torres, $k$-tuple domination on Kneser graphs (2023).
    arXiv: 2308.15603v1
  10. P. Erdős, C. Ko and R. Rado, Intersection theorems for system of finite sets, Q.J. Math. 12 (1961) 313–320.
    https://doi.org/10.1093/qmath/12.1.313
  11. A. Gagarin and V.E. Zverovich, A generalised upper bound for the $k$-tuple domination number, Discrete Math. 308 (2008) 880–885.
    https://doi.org/10.1016/j.disc.2007.07.033
  12. I. Gorodezky, Dominating Sets in Kneser Graphs, Master's Thesis (University of Waterloo, 2007).
  13. P. Hammond and D.H. Smith, Perfect codes in the graphs $O_k$, J. Combin. Theory Ser. B 19 (1975) 239–255.
    https://doi.org/10.1016/0095-8956(75)90087-8
  14. C. Hartman and D.B. West, Covering designs and domination in Kneser graphs (2003), manuscript.
  15. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  16. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, New York, 1998).
    https://doi.org/10.1201/9781315141428
  17. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, Boca Raton, 1998).
    https://doi.org/10.1201/9781482246582
  18. J. Ivančo and B. Zelinka, Domination in Kneser graphs, Math. Bohem. 118 (1993) 147–152.
    https://doi.org/10.21136/MB.1993.126050
  19. P. Jalilolghadr and A. Behtoei, Total dominator chromatic number of Kneser graphs, AKCE Int. J. Graphs Comb. 20 (2023) 52–56.
    https://doi.org/10.1080/09728600.2023.2170299
  20. M. Kneser, Aufgabe $300$, Jahresber. Dtsch. Math.-Ver. 2(27) (1955) 3–16.
  21. C.-S. Liao and G.J. Chang, $k$-tuple domination in graphs, Inform. Process. Lett. 87 (2003) 45–50.
    https://doi.org/10.1016/S0020-0190(03)00233-3
  22. L. Lovász, Kneser's conjecture, chromatic numbers and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324.
    https://doi.org/10.1016/0097-3165(78)90022-5
  23. J. Matoušek, A combinatorial proof of Kneser's conjecture, Combinatorica 24 (2004) 163–170.
    https://doi.org/10.3929/ethz-b-000050671
  24. P.R.J. Östergård, Z. Shao and X. Xu, Bounds on the domination number of Kneser graphs, Ars Math. Contemp. 9 (2015) 187–195.
    https://doi.org/10.26493/1855-3974.491.b02
  25. J. Przybyło, On upper bounds for multiple domination numbers of graphs, Discrete Appl. Math. 161 (2013) 2758–2763.
    https://doi.org/10.1016/j.dam.2013.05.006
  26. G.V. Ramanan, Proof of a conjecture of Frankl and Füredi, J. Combin. Theory Ser. A 79 (1997) 53–67.
    https://doi.org/10.1006/jcta.1997.2774
  27. M. Valencia-Pabon and J.-C. Vera, On the diameter of Kneser graphs, Discrete Math. 305 (2005) 383–385.
    https://doi.org/10.1016/j.disc.2005.10.001
  28. T. Zec and M. Grbić, Several Roman domination graph invariants on Kneser graphs, Discrete Math. Theor. Comput. Sci. 25:1 (2023) 14.
    https://doi.org/10.46298/dmtcs.10506
  29. IBM, ILOG CPLEX Optimization Studio $22.1.0$ (Accesed: 2024-03-30).
    https://www.ibm.com/products/ilog-cplex-optimization-studio

Close