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Dedicated to the memory of Slobodan Simić.

Abstract

A nut graph is a singular graph with one-dimensional kernel and corre-
sponding eigenvector with no zero elements. The problem of determining the
orders n for which d-regular nut graphs exist was recently posed by Gauci,
Pisanski and Sciriha. These orders are known for d ≤ 4. Here we solve the
problem for all remaining cases d ≤ 11 and determine the complete lists of
all d-regular nut graphs of order n for small values of d and n. The existence
or non-existence of small regular nut graphs is determined by a computer
search. The main tool is a construction that produces, for any d-regular nut
graph of order n, another d-regular nut graph of order n+2d. If we are given
a sufficient number of d-regular nut graphs of consecutive orders, called seed
graphs, this construction may be applied in such a way that the existence
of all d-regular nut graphs of higher orders is established. For even d the
orders n are indeed consecutive, while for odd d the orders n are consecutive
even numbers. Furthermore, necessary conditions for combinations of order
and degree for vertex-transitive nut graphs are derived.
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