EQUITABLE TOTAL COLORING OF CORONA OF CUBIC GRAPHS

Hanna Furmańczyk
Institute of Informatics
Faculty of Mathematics, Physics and Informatics University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland

e-mail: hanna.furmanczyk@inf.ug.edu.pl

AND

Rita Zuazua
Department of Mathematics, Faculty of Sciences
National Autonomous University of Mexico Ciudad Universitaria, Coyoacan, 04510 Mexico, DF, Mexico

e-mail: ritazuazua@ciencias.unam.mx

Abstract

The minimum number of total independent partition sets of $V \cup E$ of a graph $G=(V, E)$ is called the total chromatic number of G, denoted by $\chi^{\prime \prime}(G)$. If the difference between cardinalities of any two total independent sets is at most one, then the minimum number of total independent partition sets of $V \cup E$ is called the equitable total chromatic number, and is denoted by $\chi^{\prime \prime}(G)$.

In this paper we consider equitable total coloring of coronas of cubic graphs, $G \circ H$. It turns out that independently on the values of equitable total chromatic number of factors G and H, equitable total chromatic number of corona $G \circ H$ is equal to $\Delta(G \circ H)+1$. Thereby, we confirm Total Coloring Conjecture (TCC), posed by Behzad in 1964, and Equitable Total Coloring Conjecture (ETCC), posed by Wang in 2002, for coronas of cubic graphs. As a direct consequence we get that all coronas of cubic graphs are of Type 1.

Keywords: equitable coloring, total coloring, equitable total coloring, cubic graphs.
2010 Mathematics Subject Classification: 05C15, 05C76.

References

[1] M. Behzad, G. Chartrand and J.K. Cooper Jr, The colour numbers of complete graphs, J. Lond. Math. Soc. (2) 42 (1967) 226-228.
https://doi.org/10.1112/jlms/s1-42.1.226
[2] B.L. Chen, K.W. Lih and P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443-447.
https://doi.org/10.1006/eujc.1994.1047
[3] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Zhihe, Equitable total coloring of $C_{m} \square C_{n}$, Discrete Appl. Math. 157 (2009) 596-601.
https://doi.org/10.1016/j.dam.2008.08.030
[4] S. Dantas, C.M.H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V.F. dos Santos and D. Sasaki, On the equitable total chromatic number of cubic graphs, Discrete Appl. Math. 209 (2016) 84-91. https://doi.org/10.1016/j.dam.2015.10.013
[5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322-325. https://doi.org/10.1007/BF01844162
[6] H.L. Fu, Some results on equalized total coloring, Congr. Numer. 102 (1994) 111-119.
[7] H. Furmańczyk, Equitable coloring of graphs, in: Graph Colorings, M. Kubale (Ed(s)), (Amer. Math. Soc. 352, 2004) 35-53. https://doi.org/10.1090/conm/352/03
[8] H. Furmańczyk, Equitable coloring of graph products, Opuscula Math. 26 (2006) 31-44.
[9] H. Furmańczyk and M. Kubale, Equitable coloring of corona products of cubic graphs is harder than ordinary coloring, Ars Math. Contemp. 10 (2016) 333-347. https://doi.org/10.26493/1855-3974.687.99b
[10] H. Gui, W. Wang, Y. Wang and Z. Zhang, Equitable total-coloring of subcubic graphs, Discrete Appl. Math. 184 (2015) 167-170. https://doi.org/10.1016/j.dam.2014.11.014
[11] P. Hall, On representatives of subsets, J. London Math. Soc. (2) 10 (1935) 26- 30. https://doi.org/10.1112/jlms/s1-10.37.26
[12] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922. https://doi.org/10.1080/00029890.1973.11993408
[13] A. Sánchez-Arroyo, Determining the total colouring number is NP-hard, Discrete Math. 78 (1989) 315-319. https://doi.org/10.1016/0012-365X(89)90187-8
[14] W.-F. Wang, Equitable total coloring of graphs with maximum degree 3, Graphs Combin. 18 (2002) 677-685.
https://doi.org/10.1007/s003730200051
[15] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. 2 (1971) 405-408.
https://doi.org/10.1112/jlms/s2-3.3.405
[16] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz. 3 (1964) 25-30.
[17] W. Wang and K. Zhang, Equitable colorings of line graphs and complete r-partite graphs, Systems Sci. Math. Sci. 13 (2000) 190-194.

Received 8 June 2018
Revised 31 May 2019
Accepted 13 September 2019

