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Abstract

We investigate extremal graphs related to the game of Cops and Robbers.
We focus on graphs where a single cop can catch the robber; such graphs
are called cop-win. The capture time of a cop-win graph is the minimum
number of moves the cop needs to capture the robber. We consider graphs
that are extremal with respect to capture time, i.e., their capture time is as
large as possible given their order. We give a new characterization of the
set of extremal graphs. For our alternative approach we assign a rank to
each vertex of a graph, and then study which configurations of ranks are
possible. We partially determine which configurations are possible, enough
to prove some further extremal results. We leave a full classification as an
open question.
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Appendix

The results proved in this appendix are included to keep the paper self-contained.
However more general results, that include those here, are contained in our sub-
mitted paper [7] which was unpublished at the time this paper was published.
Similar results are proved in [3]; the relationship to our approach is discussed
in [7].

The proof that the corner ranking procedure is well defined follows.

Proof. To show that the corner ranking procedure is well-defined on cop-win
graphs, it suffices to show if G is a cop-win graph which is not a clique, then
G must have a strict corner. Supposing G is a non-clique which has no strict
corners, we show that it is not cop-win. Let v ∈ V (G) be some corner, and let
v1, . . . , vk be all the vertices which corner v, which means that any two vertices
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among v, v1, . . . , vk are twins. Using the idea of corner elimination, G is cop-win
if and only if the graph G ′ obtained by deleting the corners v1, . . . , vk is cop-win.
Note that v is not a corner in G ′, and since G was not a clique, G ′ is not a clique.
If G ′ has no corners, then G is not cop-win. Otherwise, repeating the removal
process for the remaining sets of twins in G ′ will eventually result in a graph that
has no corners. Thus G is not cop-win.

The proof of Lemma ?? follows.

Proof. Suppose (v1, . . . , vk) is a maximal sequence of strict corners such that
v1 = v and each vi+1 strictly corners vi. Note that vj strictly corners vi if i < j,
so vk strictly corners v. Since vk is a strict corner, it must be strictly cornered
by some vertex w /∈ {v1, . . . , vk}. By the maximality of the sequence, w is not a
strict corner. Since v is strictly cornered by vk and vk is strictly cornered by w,
v is strictly cornered by w, which is not a strict corner, and thus w is of higher
rank.

To prove Theorem ??, we need to define projection functions relative to
corner rank. For any graph G , define P(G) to be the non-empty subsets of
V (G).

Definition. Suppose G is a graph with corner rank α. We define the functions
f1, . . . , fα−1 and F1, . . . , Fα−1, Fα, where fk : P

(

G [k]
)

→ P
(

G [k+1]
)

and Fk :

P(G) → P
(

G [k]
)

.

– For a single vertex u ∈ V
(

G [k]
)

, define

fk({u}) =

{

{u} if cr(u) > k

the set of vertices in G [k+1] that strictly corner u in G [k] if cr(u) = k.

– fk({u1, . . . , ut}) =
⋃

1≤i≤t fk({ui}).

– Let F1 : P(G) → P(G) be the identity function.

– For k ≥ 2, let Fk = fk−1 ◦ · · · ◦ f1.

For a function h whose domain is sets of vertices, we adopt the usual convention
that h(u) = h({u}) for a single vertex u. We remark that by by Lemma ?? the
functions fk are guaranteed to have non-empty sets for values. We say v is a
k-projection (or simply a projection) of w if v ∈ Fk(w).

Definition. Let H and G be two graphs. We say the function h : P(H ) → P(G)
is a homomorphism if all the vertices of h(U) are adjacent to all the vertices of
h(V ) whenever all the vertices of U are adjacent to all the vertices of V .

Lemma. For any graph with corner rank α, its associated functions f1, . . . , fα−1

and F1, . . . , Fα−1, Fα are homomorphisms.



Proof. Let G be the graph. The identity function F1 is a homomorphism. We
show that each fk is a homomorphism, which implies all other Fk’s are homomor-
phisms because the property is preserved by composition. We prove that fk is a
homomorphism when the sets U and V consist of just the single vertices u and v,
respectively. The general case then follows immediately. Suppose u, v ∈ V (G [k])
are distinct and adjacent, and let u∗ ∈ fk(u) and v∗ ∈ fk(v); we show that u∗

and v∗ are adjacent. Note that even if u∗ = v∗, the argument works since our
graphs are reflexive.

Case 1. Suppose u, v ∈ V (G [k+1]). Then fk(v) = {v} and fk(u) = {u}, and
so u∗ = u and v∗ = v are adjacent.

Case 2. Suppose v ∈ V (G [k+1]), u /∈ V (G [k+1]). So v∗ = v and u∗ 6= u. Since
u∗ strictly corners u in G [k], u∗ is adjacent to v, and thus u∗ and v∗ are adjacent.

Case 3. Suppose u, v /∈ V (G [k+1]). So v∗ 6= v and u∗ 6= u. Since u∗ strictly
corners u in G [k], u∗ is adjacent to both u and v. Since v∗ strictly corners v in
G [k], and v is adjacent to u∗, we have that v∗ is also adjacent to u∗.

The proof of Theorem ?? follows.

Proof. Let G be a t-top cop-win graph with corner rank α. To show that
capt(G) = α− t, we prove an upper and lower bound on capt(G).

First we show capt(G) ≤ α− t. For k ≥ 1, we say that the robber is k-caught
if the cop is at some vertex c, the robber at some vertex r, and c ∈ Fk(r). We
describe a strategy on G for the cop that succeeds in at most α − t cop moves.
The cop starts at any vertex of corner rank α. No matter where the robber starts,
if G is 1-top, then since the cop dominates the top two ranks of vertices, the cop
can play so after one cop move, the robber is (α − 1)-caught. Similarly, if G is
0-top, then the cop can play so that after one move the robber is α-caught. We
show the following claim:

If the robber is k-caught, for k ≥ 2, then for any robber move, there
is a cop move which leaves the robber (k − 1)-caught.

Proving the claim proves the upper bound since we can repeatedly apply the
claim and once the robber is 1-caught, the robber is actually caught. Now we
prove the claim, where we suppose the cop is at c and the robber is at r. Since
c ∈ Fk(r) = fk−1 ◦ Fk−1(r), either c ∈ Fk−1(r) or there is an r′ ∈ Fk−1(r) such
that c strictly corners r′ in G [k−1]. Either way, there is a (k − 1)-projection
r′ of r such that c corners r′ in G [k−1]. Thus, since Fk−1 is a homomorphism,
wherever the robber moves to, from r, the cop can move so that the robber is
(k − 1)-caught.



Now we show capt(G) ≥ α − t. We say that a robber location at vertex r
is k-proj-safe if its corner rank is at least k and the cop is at a vertex c such
that there is some c′ ∈ Fk(c) such that c′ is not adjacent to r. Since Fk is a
homomorphism, if a location is k-proj-safe, then the cop is not adjacent to the
robber.

If G is 0-top, then the robber starts at a vertex which is (α − 1)-proj-safe,
while if G is 1-top, then the robber starts at a vertex which is (α− 2)-proj-safe.
We show that starting in such a way is possible. We use the fact that since Fk

is a homomorphism, the vertices of rank k or higher adjacent to a vertex c are a
subset of the vertices of rank k or higher adjacent to a vertex from Fk(c). Thus
to see that a (α−1)-proj-safe start is possible in the 0-top case, it suffices to show
there is no vertex in G [α−1] that dominates G [α−1]. If there were such a vertex,
it would have to be rank α, but then the graph would be 1-top. Similarly, to see
that such a start is possible in the 1-top case, it suffices to show that there is no
vertex in G [α−2] that dominates G [α−2]. Suppose for the sake of contradiction
there is such a vertex v. In G [α−2], v cannot strictly corner any vertex in G [α−1],
so all the vertices of G [α−1] are twins with v. But the fact that a vertex of rank
α− 1 is twins with a vertex of rank α leads to a contradiction. The lower bound
will follow once we prove the following claim:

If the robber location is k-proj-safe, for k ≥ 2, then no matter what
the cop does, the robber has a move to a (k − 1)-proj-safe location.

To prove the claim, suppose the robber is at the k-proj-safe vertex r0, and the
cop is at c0. Thus there exists c′0 ∈ Fk(c0) such that c′0 is not adjacent to r0.
Suppose the cop then moves to c1. Assume for the sake of contradiction that
from r0 the robber does not have a move to a (k− 1)-proj-safe vertex. For r0 not
to have such a move, means that all c′1 ∈ Fk−1(c1) corner r0 in G [k−1]. Consider
one such c′1. Since r0 has rank at least k, and thus cannot be a strict corner in
G [k−1], this cornering cannot be strict, and thus c′1 and r0 are twins in G [k−1].
Since r0 has rank at least k, c′1 must also have rank at least k. This implies
that fk−1(c

′
1) = {c′1} and so c′1 ∈ Fk(c1) = fk−1 ◦ Fk−1(c1). However since Fk is

a homomorphism and c1 is adjacent to c0, c
′
1 is adjacent to c′0. Since r0 is not

adjacent to c′0, this contradicts the fact that c′1 and r0 are twins in G [k−1].
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