THE LAGRANGIAN DENSITY OF $\{123,234,456\}$ AND THE TURÁN NUMBER OF ITS EXTENSION

Pingge Chen
College of Science
Hunan University of Technology
e-mail: chenpingge@hnu.edu.cn
Jinhua Liang
College of Mathematics and Econometrics
Hunan University
e-mail: jh_liang@hnu.edu.cn

AND
Yuejian Peng ${ }^{1}$
Institute of Mathematics
Hunan University
e-mail: ypeng1@hnu.edu.cn

Abstract

Given a positive integer n and an r-uniform hypergraph F, the Turán number ex (n, F) is the maximum number of edges in an F-free r-uniform hypergraph on n vertices. The Turán density of F is defined as $\pi(F)=$ $\lim _{n \rightarrow \infty} \frac{e x(n, F)}{\binom{n}{r}}$. The Lagrangian density of F is $\pi_{\lambda}(F)=\sup \{r!\lambda(G): G$ is F-free \}, where $\lambda(G)$ is the Lagrangian of G. Sidorenko observed that $\pi(F) \leq \pi_{\lambda}(F)$, and Pikhurko observed that $\pi(F)=\pi_{\lambda}(F)$ if every pair of vertices in F is contained in an edge of F. Recently, Lagrangian densities of hypergraphs and Turán numbers of their extensions have been studied actively. For example, in the paper [A hypergraph Turán theorem via Lagrangians of intersecting families, J. Combin. Theory Ser. A 120 (2013) 2020-2038], Hefetz and Keevash studied the Lagrangian densitiy of the 3uniform graph spanned by $\{123,456\}$ and the Turán number of its extension. In this paper, we show that the Lagrangian density of the 3-uniform graph

[^0]spanned by $\{123,234,456\}$ achieves only on K_{5}^{3}. Applying it, we get the Turán number of its extension, and show that the unique extremal hypergraph is the balanced complete 5-partite 3 -uniform hypergraph on n vertices.
Keywords: Turán number, hypergraph Lagrangian, Lagrangian density.
2010 Mathematics Subject Classification: 05C65.

References

[1] A. Brandt, D. Irwin and T. Jiang, Stability and Turán numbers of a class of hypergraphs via Lagrangians, Combin. Probab. Comput. 26 (2017) 367-405. https://doi.org/10.1017/S0963548316000444
[2] P. Chen, J. Liang and Y. Peng, Lagrangian density of $\{123,234,567\}$ and Turán numbers of its extension, submitted.
[3] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of the small witt-designs, J. Combin. Theory Ser. A 52 (1989) 129-147. https://doi.org/10.1016/0097-3165(89)90067-8
[4] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149-159. https://doi.org/10.1007/BF02579215
[5] D. Hefetz and P. Keevash, A hypergraph Turán theorem via lagrangians of intersecting families, J. Combin. Theory Ser. A 120 (2013) 2020-2038. https://doi.org/10.1016/j.jcta.2013.07.011
[6] S. Hu, Y. Peng and B. Wu, Lagrangian densities of the disjoint union of 3-uniform linear paths and matchings and Turán numbers of their extensions, submitted.
[7] T. Jiang, Y. Peng and B. Wu, Lagrangian densities of some sparse hypergraphs and Turán numbers of their extensions, European J. Combin. 73 (2018) 20-36. https://doi.org/10.1016/j.ejc.2018.05.001
[8] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turán in the theory of graphs, Mat. Lapok (N.S.) 15 (1964) 228-238.
[9] P. Keevash, Hypergrah Turán problems, in: Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Ser. 392 (Cambridge Univ. Press, Cambridge, 2011) 83-140. https://doi.org/10.1017/CB09781139004114
[10] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533-540. https://doi.org/10.4153/CJM-1965-053-6
[11] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory Ser. B 96 (2006) 122-134.
https://doi.org/10.1016/j.jctb.2005.06.013
[12] D. Mubayi and O. Pikhurko, A new generalization of Mantel's theorem to k-graphs, J. Combin. Theory Ser. B 97 (2007) 669-678. https://doi.org/10.1016/j.jctb.2006.11.003
[13] S. Norin and L. Yepremyan, Turán number of generalized triangles, J. Combin. Theory Ser. A 146 (2017) 312-343.
https://doi.org/10.1016/j.jcta.2016.09.003
[14] S. Norin and L. Yepremyan, Turán numbers of extensions, J. Combin. Theory Ser. A 155 (2018) 476-492.
https://doi.org/10.1016/j.jcta.2017.08.004
[15] O. Pikhurko, An exact Turán result for the generalized triangle, Combinatorica 28 (2008) 187-208.
https://doi.org/10.1007/s00493-008-2187-2
[16] O. Pikhurko, Exact computation of the hypergraph Turán function for expanded complete 2-graphs, J. Combin. Theory Ser. B 103 (2013) 220-225. https://doi.org/10.1016/j.jctb.2012.09.005
[17] A.F. Sidorenko, The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Mat. Zametki 41 (1987) 433-455. https://doi.org/10.1027.BF01158259
[18] A.F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989) 207-215. https://doi.org/10.1007/BF02124681
[19] B. Wu and Y. Peng, Lagrangian densities of 3-uniform linear paths and Turán numbers of their extensions, submitted.
[20] B. Wu, Y. Peng and P. Chen, On a conjecture of Hefetz and Keevash on Lagrangians of intersecting hypergraphs and Turán numbers. arXiv:1701.06126v3
[21] Z. Yan and Y. Peng, λ-perfect hypergraphs and Lagrangian densities of hypergraph cycles, Discrete Math. (2019). https://doi.org/10.1016/j.disc.2019.03.024
[22] A.A. Zykov, On some properties of linear complexes, Mat. Sb. 24 (1949) 163-188.
Received 4 August 2017
Revised 18 March 2019
Accepted 18 March 2019

[^0]: ${ }^{1}$ Corresponding author.

