EQUATING \boldsymbol{k} MAXIMUM DEGREES IN GRAPHS WITHOUT SHORT CYCLES

Maximilian Fürst, Michael Gentner,
Simon Jäger, Dieter Rautenbach
Institute of Optimization and Operations Research
Ulm University, Germany
e-mail: maximilian.fuerst@uni-ulm.de michael.gentner@uni-ulm.de simon.jaeger@uni-ulm.de dieter.rautenbach@uni-ulm.de

AND
Michael A. Henning
Department of Pure and Applied Mathematics
University of Johannesburg, South Africa
e-mail: mahenning@uj.ac.za

Abstract

For an integer k at least 2 , and a graph G, let $f_{k}(G)$ be the minimum cardinality of a set X of vertices of G such that $G-X$ has either k vertices of maximum degree or order less than k. Caro and Yuster [Discrete Mathematics 310 (2010) 742-747] conjectured that, for every k, there is a constant c_{k} such that $f_{k}(G) \leq c_{k} \sqrt{n(G)}$ for every graph G. Verifying a conjecture of Caro, Lauri, and Zarb [arXiv:1704.08472v1], we show the best possible result that, if t is a positive integer, and F is a forest of order at most $\frac{1}{6}\left(t^{3}+6 t^{2}+17 t+12\right)$, then $f_{2}(F) \leq t$. We study $f_{3}(F)$ for forests F in more detail obtaining similar almost tight results, and we establish upper bounds on $f_{k}(G)$ for graphs G of girth at least 5 . For graphs G of girth more than $2 p$, for p at least 3 , our results imply $f_{k}(G)=O\left(n(G)^{\frac{p+1}{3 p}}\right)$. Finally, we show that, for every fixed k, and every given forest F, the value of $f_{k}(F)$ can be determined in polynomial time.

Keywords: maximum degree, repeated degrees, repetition number.
2010 Mathematics Subject Classification: 05C05, 05C07.

References

[1] M.O. Albertson and D.L. Boutin, Lower bounds for constant degree independent sets, Discrete Math. 127 (1994) 15-21. doi:10.1016/0012-365X(92)00463-2
[2] B. Bollobás and A.D. Scott, Independent sets and repeated degrees, Discrete Math. 170 (1997) 41-49.
doi:10.1016/0012-365X(95)00355-Z
[3] Y. Caro, J. Lauri and C. Zarb, Equating two maximum degrees, manuscript. arXiv:1704.08472v1
[4] Y. Caro, A. Shapira and R. Yuster, Forcing k-repetitions in degree sequences, Electron. J. Combin. 21 (2014) \#P24.
[5] Y. Caro and R. Yuster, Large induced subgraphs with equated maximum degree, Discrete Math. 310 (2010) 742-747.
doi:10.1016/j.disc.2009.09.003
[6] Y. Caro and D.B. West, Repetition number of graphs, Electron. J. Combin. 16 (2009) \#R7.
[7] M. Miller and J. Širáň, Moore graphs and beyond: A survey of the degree/diameter problem, Electron. J. Combin. 20 (2013) \#DS14v2.

Received 29 November 2017
Revised 15 May 2018
Accepted 15 May 2018

