AN IMPROVED UPPER BOUND ON NEIGHBOR EXPANDED SUM DISTINGUISHING INDEX

Bojan Vučković
Mathematical Institute, Serbian Academy of Science and Arts, Kneza Mihaila 36 (P.O. Box 367), 11001 Belgrade, Serbia
e-mail: b.vuckovic@turing.mi.sanu.ac.rs

Abstract

A total k-weighting f of a graph G is an assignment of integers from the set $\{1, \ldots, k\}$ to the vertices and edges of G. We say that f is neighbor expanded sum distinguishing, or NESD for short, if $\sum_{w \in N(v)}(f(v w)+f(w))$ differs from $\sum_{w \in N(u)}(f(u w)+f(w))$ for every two adjacent vertices v and u of G. The neighbor expanded sum distinguishing index of G, denoted by egndi $\sum_{\sum}(G)$, is the minimum positive integer k for which there exists an NESD weighting of G. An NESD weighting was introduced and investigated by Flandrin et al. (2017), where they conjectured that egndi $\sum_{\sum}(G) \leq 2$ for any graph G. They examined some special classes of graphs, while proving that egndi $\sum_{\Sigma}(G) \leq \chi(G)+1$. We improve this bound and show that egndi $_{\sum}(G) \leq 3$ for any graph G. We also show that the conjecture holds for all bipartite, 3 -regular and 4 -regular graphs.

Keywords: general edge coloring, total coloring, neighbor sum distinguishing index.
2010 Mathematics Subject Classification: 05C15.

References

[1] G. Chartrand and P. Zhang, Chromatic Graph Theory (Boca Raton: Chapman \& Hall/CRC, 2009).
[2] E. Flandrin, H. Li, A. Marczyk, J.-F. Sacle and M. Woźniak, A note on neighbor expanded sum distinguishing index, Discuss. Math. Graph Theory 37 (2017) 29-37. doi:10.7151/dmgt. 1909
[3] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151-157.
doi:10.1016/j.jctb.2003.12.001
[4] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002
[5] R.L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.
doi:10.1017/S030500410002168X

