KALEIDOSCOPIC EDGE-COLORING OF COMPLETE GRAPHS AND r-REGULAR GRAPHS ${ }^{1}$

Xueliang Li and Xiaoyu Zhu
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
e-mail: lxl@nankai.edu.cn
zhuxy@mail.nankai.edu.cn

Abstract

For an r-regular graph G, we define an edge-coloring c with colors from $\{1,2, \ldots, k\}$, in such a way that any vertex of G is incident with at least one edge of each color. The multiset-color $c_{m}(v)$ of a vertex v is defined as the ordered tuple ($a_{1}, a_{2}, \ldots, a_{k}$), where $a_{i}(1 \leq i \leq k)$ denotes the number of edges of color i which are incident with v in G. Then this edge-coloring c is called a k-kaleidoscopic coloring of G if every two distinct vertices in G have different multiset-colors and in this way the graph G is defined as a k-kaleidoscope. In this paper, we determine the integer k for a complete graph K_{n} to be a k-kaleidoscope, and hence solve a conjecture in [P. Zhang, A Kaleidoscopic View of Graph Colorings, (Springer Briefs in Math., New York, 2016)] that for any integers n and k with $n \geq k+3 \geq 6$, the complete graph K_{n} is a k-kaleidoscope. Then, we construct an r-regular 3kaleidoscope of order $\binom{r-1}{2}-1$ for each integer $r \geq 7$, where $r \equiv 3(\bmod 4)$, which solves another conjecture in [P. Zhang, A Kaleidoscopic View of Graph Colorings, (Springer Briefs in Math., New York, 2016)] on the maximum order of r-regular 3-kaleidoscopes.

Keywords: k-kaleidoscope, regular graph, edge-coloring.
2010 Mathematics Subject Classification: 05C15.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, 2008).
[2] G. Chartrand, S. English and P. Zhang, Kaleidoscopic colorings of graphs, Discuss. Math. Graph Theory 37 (2017) 711-727.
doi:10.7151/dmgt. 1950

[^0][3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[4] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38.
doi:10.1007/s00373-012-1243-2
[5] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, New York, 2012).
[6] P. Zhang, A Kaleidoscopic View of Graph Colorings (Springer Briefs in Math., New York, 2016). doi:10.1007/978-3-319-30518-9

Received 18 April 2017
Revised 16 December 2017
Accepted 16 December 2017

[^0]: ${ }^{1}$ Supported by NSFC No.11531011, 11371205.

