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ORIENTED INCIDENCE COLOURINGS OF DIGRAPHS
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Université de Montpellier,

Montpellier, France

e-mail: pascal.ochem@lirmm.fr

and
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Abstract

Brualdi and Quinn Massey [6] defined incidence colouring while study-
ing the strong edge chromatic index of bipartite graphs. Here we introduce
a similar concept for digraphs and define the oriented incidence chromatic
number. Using digraph homomorphisms, we show that the oriented inci-
dence chromatic number of a digraph is closely related to the chromatic
number of the underlying simple graph. This motivates our study of the ori-
ented incidence chromatic number of symmetric complete digraphs. We give
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upper and lower bounds for the oriented incidence chromatic number of these
graphs, as well as digraphs arising from common graph constructions and
decompositions. Additionally we construct, for all k > 2, a target digraph
Hk for which oriented incidence k colouring is equivalent to homomorphism
to Hk.

Keywords: digraph homomorpism, graph colouring, incidence colouring,
computational complexity.
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Colour Class Vertex List

1 (1, (7, 1)), (3, (3, 2)), (2, (4, 2)), (3, (4, 3)), (3, (3, 5)),
(5, (4, 5)), (5, (6, 5)), (3, (3, 7)), (2, (7, 2)), (5, (7, 5)),
(6, (7, 6)), (1, (6, 1)), (6, (6, 4)), (6, (6, 2))

2 (6, (1, 6)), (7, (1, 7)), (2, (3, 2)), (4, (3, 4)), (4, (4, 1)),
(4, (4, 2)), (2, (5, 2)), (4, (4, 5)), (6, (5, 6)), (4, (4, 7)),
(7, (3, 7)), (7, (5, 7)), (6, (6, 7)), (6, (6, 3))

3 (1, (1, 2)), (1, (1, 3)), (1, (1, 4)), (1, (1, 5)), (1, (1, 6)),
(1, (1, 7)), (3, (2, 3)), (4, (2, 4)), (5, (2, 5)), (6, (2, 6)),
(7, (2, 7))

4 (1, (2, 1)), (1, (3, 1)), (1, (4, 1)), (5, (3, 5)), (5, (5, 4)),
(5, (5, 1)), (5, (5, 2)), (7, (4, 7)), (7, (7, 2)), (7, (7, 3)),
(6, (3, 6)), (5, (5, 6)), (6, (4, 6)), (7, (7, 6)), (7, (7, 1))

5 (2, (2, 1)), (1, (5, 1)), (1, (6, 1)), (1, (3, 1)), (2, (2, 4)),
(2, (2, 5)), (3, (3, 4)), (3, (5, 3)), (4, (5, 4)), (3, (3, 6)),
(2, (6, 2)), (7, (7, 4)), (7, (7, 5)), (4, (6, 4)), (7, (6, 7))

6 (2, (1, 2)), (3, (1, 3)), (4, (1, 4)), (5, (1, 5)), (2, (2, 3)),
(4, (4, 3)), (2, (2, 6)), (2, (2, 7)), (5, (5, 3)), (3, (6, 3)),
(3, (7, 3)), (4, (7, 4)), (5, (5, 7)), (4, (4, 6)), (5, (6, 5))

Table 1. An oriented incidence colouring
−→
K7 with six colours.



Colour Class Vertex List

1 (6, (6, 8)), (1, (2, 1)), (3, (3, 1)), (3, (3, 2)), (2, (2, 4)),
(3, (3, 4)), (4, (5, 4)), (6, (2, 6)), (6, (6, 1)), (6, (6, 4)),
(6, (6, 5)), (4, (7, 4)), (8, (5, 8)), (3, (5, 3)), (1, (7, 1)),
(6, (7, 6)), (3, (7, 3)), (1, (5, 1))

2 (8, (8, 5)), (8, (8, 6)), (2, (2, 1)), (2, (2, 3)), (8, (3, 8)),
(1, (3, 1)), (4, (4, 1)), (4, (3, 4)), (4, (4, 5)), (4, (4, 7)),
(6, (3, 6)), (2, (2, 6)), (4, (4, 6)), (6, (5, 6)), (2, (5, 2)),
(7, (5, 7)), (2, (2, 7))

3 (1, (8, 1)), (2, (8, 2)), (3, (8, 3)), (4, (8, 4)), (5, (8, 5)),
(6, (8, 6)), (7, (8, 7)), (1, (1, 2)), (1, (1, 3)), (1, (1, 4)),
(1, (1, 5)), (1, (1, 6)), (7, (7, 2)), (7, (7, 4)), (7, (7, 5)),
(7, (7, 6)), (7, (7, 3))

4 (1, (1, 8)), (1, (1, 7)), (2, (2, 8)), (3, (3, 8)), (2, (2, 4)),
(3, (4, 3)), (8, (4, 8)), (1, (4, 1)), (3, (3, 6)), (1, (6, 1)),
(2, (6, 2)), (5, (7, 5)), (2, (2, 5)), (3, (3, 5)), (5, (4, 5)),
(5, (6, 5)), (2, (7, 2)), (3, (3, 7)), (8, (6, 8)), (8, (7, 8))

5 (8, (1, 8)), (4, (4, 8)), (5, (5, 8)), (7, (7, 8)), (8, (2, 8)),
(3, (1, 3)), (4, (1, 4)), (3, (2, 3)), (4, (4, 2)), (4, (4, 3)),
(5, (2, 5)), (5, (5, 1)), (3, (6, 3)), (4, (6, 4)), (5, (5, 3)),
(7, (2, 7)), (7, (7, 1)), (5, (5, 6)), (7, (6, 7))

6 (8, (8, 1)), (8, (8, 2)), (8, (8, 3)), (8, (8, 4)), (8, (8, 7)),
(2, (1, 2)), (2, (3, 2)), (5, (1, 5)), (6, (1, 6)), (7, (1, 7)),
(2, (4, 2)), (5, (5, 2)), (6, (6, 2)), (6, (6, 3)), (6, (4, 6)),
(5, (3, 5)), (7, (4, 7)), (5, (5, 4)), (5, (5, 7)), (6, (6, 7)),
(7, (3, 7))

Table 2. An oriented incidence colouring
−→
K8 with six colours.



Figure 1. Oriented incidence colourings of
−→
K4,

−→
K5,

−→
K6 with the minimum number of

colours. The colouring of
−→
K4 is obtained by deleting any vertex in the colouring of

−→
K5.
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