ANTIPODAL EDGE-COLORINGS OF HYPERCUBES

Douglas B. West ${ }^{1}$
Zhejiang Normal University, Jinhua, China and University of Illinois, Urbana, IL e-mail: dwest@math.uiuc.edu

AND

Jennifer I. Wise ${ }^{2}$
Virginia Polytechnic Institute and State University
Blacksburg, VA
e-mail: jiwise@vt.edu

Abstract

Two vertices of the k-dimensional hypercube Q_{k} are antipodal if they differ in every coordinate. Edges $u v$ and $x y$ are antipodal if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of Q_{k} is a 2-edge-coloring such that antipodal edges always have different colors. Norine conjectured that for $k \geq 2$, in every antipodal edge-coloring of Q_{k} some two antipodal vertices are connected by a monochromatic path. Feder and Subi proved this for $k \leq 5$. We prove it for $k \leq 6$.

Keywords: antipodal edge-coloring, hypercube, monochromatic geodesic.
2010 Mathematics Subject Classification: 05C55, 05C38.

References

[1] M. DeVos and S. Norine, Edge-antipodal colorings of cubes, The Open Problem Garden.
http://garden.irmacs.sfu.ca/?q=op/edge_antipodal_colorings_of_cubes
[2] T. Feder and C. Subi, On hypercube labellings and antipodal monochromatic paths, Discrete Appl. Math. 161 (2013) 1421-1426.
doi:10.1016/j.dam.2012.12.025

[^0][3] K. Gandhi, Maximal monochromatic geodesics in an antipodal coloring of hypercube (2015), manuscript.
http://math.mit.edu/research/highschool/primes/materials/2014/Gandhi.pdf
[4] I. Leader and E. Long, Long geodesics in subgraphs of the cube, Discrete Math. 326 (2014) 29-33.
doi:10.1016/j.disc.2014.02.013
Received 23 January 2017
Revised 31 July 2017
Accepted 31 July 2017

[^0]: ${ }^{1}$ Research supported in part by Recruitment Program of Foreign Experts, 1000 Talent Plan, State Administration of Foreign Experts Affairs, China.
 ${ }^{2}$ Research supported in part by NSF grant DMS 08-38434, "EMSW21-MCTP: Research Experience for Graduate Students".

