IRREDUCIBLE NO-HOLE $L(2,1)$-COLORING OF EDGE-MULTIPLICITY-PATHS-REPLACEMENT GRAPH

Nibedita Mandal and Pratima Panigrahi
Department of Mathematics
Indian Institute of Technology Kharagpur, India
e-mail: nibedita.mandal.iitkgp@gmail.com
pratima@maths.iitkgp.ernet.in

Abstract

An $L(2,1)$-coloring (or labeling) of a simple connected graph G is a mapping $f: V(G) \rightarrow Z^{+} \cup\{0\}$ such that $|f(u)-f(v)| \geq 2$ for all edges $u v$ of G, and $|f(u)-f(v)| \geq 1$ if u and v are at distance two in G. The span of an $L(2,1)$-coloring f, denoted by $\operatorname{span}(f)$, of G is $\max \{f(v): v \in V(G)\}$. The span of G, denoted by $\lambda(G)$, is the minimum span of all possible $L(2,1)$ colorings of G. For an $L(2,1)$-coloring f of a graph G with span k, an integer l is a hole in f if $l \in(0, k)$ and there is no vertex v in G such that $f(v)=l$. An $L(2,1)$-coloring is a no-hole coloring if there is no hole in it, and is an irreducible coloring if color of none of the vertices in the graph can be decreased and yield another $L(2,1)$-coloring of the same graph. An irreducible no-hole coloring, in short inh-coloring, of G is an $L(2,1)$-coloring of G which is both irreducible and no-hole. For an inh-colorable graph G, the inh-span of G, denoted by $\lambda_{i n h}(G)$, is defined as $\lambda_{i n h}(G)=\min \{\operatorname{span}(f): f$ is an inh-coloring of $G\}$. Given a function $h: E(G) \rightarrow \mathbb{N}-\{1\}$, and a positive integer $r \geq 2$, the edge-multiplicity-paths-replacement graph $G\left(r P_{h}\right)$ of G is the graph obtained by replacing every edge $u v$ of G with r paths of length $h(u v)$ each. In this paper we show that $G\left(r P_{h}\right)$ is inh-colorable except possibly the cases $h(e) \geq 2$ with equality for at least one but not for all edges e and (i) $\Delta(G)=2, r=2$ or (ii) $\Delta(G) \geq 3,2 \leq r \leq 4$. We find the exact value of $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$ in several cases and give upper bounds of the same in the remaining. Moreover, we find the value of $\lambda\left(G\left(r P_{h}\right)\right)$ in most of the cases which were left by Lü and Sun in $[L(2,1)$-labelings of the edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016) 396-404].

Keywords: $L(2,1)$-coloring, no-hole coloring, irreducible coloring, subdivision graph, edge-multiplicity-paths-replacement graph.
2010 Mathematics Subject Classification: 05C15.

References

[1] F.-H. Chang, M.-L. Chia, D. Kuo, S.-C. Liaw and M.-H. Tsai, L(2, 1)-labelings of subdivisions of graphs, Discrete Math. 338 (2015) 248-255. doi:10.1016/j.disc.2014.09.006
[2] G.J. Chang and C. Lu, Distance-two labelings of graphs, European J. Combin. 24 (2003) 53-58.
doi:10.1016/S0195-6698(02)00134-8
[3] P.C. Fishburn and F.S. Roberts, No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519. doi:10.1016/S0166-218X(03)00329-9
[4] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595. doi:10.1137/0405048
[5] F. Havet and M.-L. Yu, ($p, 1$)-total labelling of graphs, Technical Report 4650, INRIA (2002).
[6] F. Havet and M.-L. Yu, ($p, 1$)-total labelling of graphs, Discrete Math. 308 (2008) 496-513. doi:10.1016/j.disc.2007.03.034
[7] J. Jacob, R. Laskar and J.Villalpando, On the irreducible no-hole $L(2,1)$ coloring of bipartite graphs and Cartesian products, J. Combin. Math. Combin. Comput. 78 (2011) 49-64.
[8] N. Karst, J. Oehrlein, D.S. Troxell and J. Zhu, L(d,1)-labelings of the edge-pathreplacement by factorization of graphs, J. Comb. Optim. 30 (2015) 34-41. doi:10.1007/s10878-013-9632-x
[9] R.C. Laskar, G.L. Matthews, B. Novick and J. Villalpando, On irreducible no-hole $L(2,1)$-coloring of trees, Networks 53 (2009) 206-211. doi:10.1002/net. 20286
[10] R.C. Laskar and J.J. Villalpando, Irreducibility of $L(2,1)$-coloring and inh-colorablity of unicyclic and hex graphs, Util. Math. 69 (2006) 65-83.
[11] D. Lü, $L(2,1)$-labelings of the edge-path-replacement of a graph, J. Comb. Optim. 26 (2013) 385-392. doi:10.1007/s10878-012-9470-2
[12] D. Lü and J. Sun, L(2, 1)-labelings of the edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016) 396-404. doi:10.1007/s10878-014-9761-x
[13] N. Mandal and P. Panigrahi, On irreducible no-hole $L(2,1)$-coloring of subdivision of graphs, J. Comb. Optim. 33 (2017) 1421-1442. doi:10.1007/s10878-016-0047-3
[14] D.B. West, Introduction to Graph Theory (New Delhi, Prentice-Hall, 2003).
[15] M.A. Whittlesey, J.P. Georges and D.W. Mauro, On the λ-number of Q_{n} and related graphs, SIAM J. Discrete Math. 8 (1995) 499-506.
doi:10.1137/S0895480192242821
Received 26 August 2016
Revised 10 January 2017
Accepted 10 January 2017

