GENERALIZED RAINBOW CONNECTION OF GRAPHS AND THEIR COMPLEMENTS

Xueliang Li ${ }^{1}$, Colton Magnant ${ }^{2}$
Meiqin Wei ${ }^{1}$ and Xiaoyu Zhu ${ }^{1}$
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
${ }^{2}$ Department of Mathematical Sciences
Georgia Southern University
Statesboro, GA 30460-8093, USA
e-mail: lxl@nankai.edu.cn
cmagnant@georgiasouthern.edu
weimeiqin8912@163.com
zhuxy@mail.nankai.edu.cn

Abstract

Let G be an edge-colored connected graph. A path P in G is called ℓ-rainbow if each subpath of length at most $\ell+1$ is rainbow. The graph G is called (k, ℓ)-rainbow connected if there is an edge-coloring such that every pair of distinct vertices of G is connected by k pairwise internally vertex-disjoint ℓ-rainbow paths in G. The minimum number of colors needed to make $G(k, \ell)$-rainbow connected is called the (k, ℓ)-rainbow connection number of G and denoted by $r c_{k, \ell}(G)$. In this paper, we first focus on the $(1,2)$-rainbow connection number of G depending on some constraints of \bar{G}. Then, we characterize the graphs of order n with (1,2)-rainbow connection number $n-1$ or $n-2$. Using this result, we investigate the Nordhaus-Gaddum-Type problem of (1,2)-rainbow connection number and prove that $r c_{1,2}(G)+r c_{1,2}(\bar{G}) \leq n+2$ for connected graphs G and \bar{G}. The equality holds if and only if G or \bar{G} is isomorphic to a double star.

Keywords: ℓ-rainbow path, (k, ℓ)-rainbow connected, (k, ℓ)-rainbow connection number.
2010 Mathematics Subject Classification: 04C15, 05C40.
[1] E. Andrews, E. Laforge, C. Lumduanhom and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189-207.
[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550-2560. doi:10.1016/j.disc.2011.09.003
[3] J.A. Bondy and U.S.R. Murty, Graph Therory (GTM 244, Springer-Verlag, New York, 2008).
[4] G. Chartrand, S. Devereaux and P. Zhang, Color-connected graphs and informationtransfer paths, Ars Combin., to appear.
[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[6] S. Devereaux, G.L. Johns and P. Zhang, Color connection in graphs intermediate to proper and rainbow connection, J. Combin. Math. Combin. Comput., to appear.
[7] S. Devereaux and P. Zhang, k-rainbow colorings in graphs, manuscript.
[8] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141-150.
[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. doi:10.1002/jgt. 20418
[10] X. Li and C. Magnant, Properly colored notions of connectivity - a dynamic survey, Theory Appl. Graphs 0(1) (2015) Article 2. doi:10.20429/tag.2015.000102
[11] X. Li, C. Magnant, M. Wei and X. Zhu, Distance proper connection of graphs (2016) arXiv:1606.06547 [math.CO]
[12] X. Li and Y. Shi, Rainbow connection in 3-connected graphs, Graphs Combin. 29 (2013) 1471-1475.
doi:10.1007/s00373-012-1204-9
[13] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38.
doi:10.1007/s00373-012-1243-2
[14] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, New York, 2012).

Received 26 July 2016
Revised 26 November 2016 Accepted 29 November 2016

