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Abstract

There exists a significant body of work on determining the acquisition
number at(G) of various graphs when the vertices of those graphs are each
initially assigned a unit weight. We determine properties of the acquisition
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number of the path, star, complete, complete bipartite, cycle, and wheel
graphs for variations on this initial weighting scheme, with the majority of
our work focusing on the expected acquisition number of randomly weighted
graphs. In particular, we bound the expected acquisition number E(at(Pn))
of the n-path when n distinguishable “units” of integral weight, or chips, are
randomly distributed across its vertices between 0.242n and 0.375n. With
computer support, we improve it by showing that E(at(Pn)) lies between
0.29523n and 0.29576n. We then use subadditivity to show that the limiting
ratio limE(at(Pn))/n exists, and simulations reveal more exactly what the
limiting value equals. The Hoeffding-Azuma inequality is used to prove that
the acquisition number is tightly concentrated around its expected value.
Additionally, in a different context, we offer a non-optimal acquisition pro-
tocol algorithm for the randomly weighted path and exactly compute the
expected size of the resultant residual set.
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[2] E. Czabarka, M. Marsili and L.A. Székely, Threshold functions for distinct parts:
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