A DEGREE CONDITION IMPLYING ORE-TYPE CONDITION FOR EVEN [2, b]-FACTORS IN GRAPHS

SHOICHI TSUCHIYA

School of Network and Information
Senshu University, 2-1-1 Higashimita, Tama-ku
Kawasaki-shi, Kanagawa 214-8580, Japan

AND

TAKAMASA YASHIMA

Department of Mathematical Information Science
Tokyo University of Science, 1-3 Kagurazaka
Shinjuku-ku, Tokyo 162-8601, Japan

e-mail: takamasa.yashima@gmail.com

Abstract

For a graph G and even integers $b \geq a \geq 2$, a spanning subgraph F of G such that $a \leq \deg_F(x) \leq b$ and $\deg_F(x)$ is even for all $x \in V(F)$ is called an even $[a, b]$-factor of G. In this paper, we show that a 2-edge-connected graph G of order n has an even $[2, b]$-factor if $\max\{\deg_G(x), \deg_G(y)\} \geq \max\{2n + 3, 3\}$ for any nonadjacent vertices x and y of G. Moreover, we show that for $b \geq 3a$ and $a > 2$, there exists an infinite family of 2-edge-connected graphs G of order n with $\delta(G) \geq a$ such that G satisfies the condition $\deg_G(x) + \deg_G(y) > 2n + \frac{2n^2}{a+3}$ for any nonadjacent vertices x and y of G, but has no even $[a, b]$-factors. In particular, the infinite family of graphs gives a counterexample to the conjecture of Matsuda on the existence of an even $[a, b]$-factor.

Keywords: $[a, b]$-factor, even factor, 2-edge-connected, minimum degree.

2010 Mathematics Subject Classification: 05C70.

References

Received 1 February 2016
Revised 17 June 2016
Accepted 15 July 2016