A DEGREE CONDITION IMPLYING ORE-TYPE CONDITION FOR EVEN [$2, b]$-FACTORS IN GRAPHS

Shoichi Tsuchiya
School of Network and Information
Senshu University, 2-1-1 Higashimita, Tama-ku
Kawasaki-shi, Kanagawa 214-8580, Japan
AND
Takamasa Yashima
Department of Mathematical Information Science
Tokyo University of Science, 1-3 Kagurazaka
Shinjuku-ku, Tokyo 162-8601, Japan
e-mail: takamasa.yashima@gmail.com

Abstract

For a graph G and even integers $b \geqslant a \geqslant 2$, a spanning subgraph F of G such that $a \leqslant \operatorname{deg}_{F}(x) \leqslant b$ and $\operatorname{deg}_{F}(x)$ is even for all $x \in V(F)$ is called an even $[a, b]$-factor of G. In this paper, we show that a 2 -edge-connected graph G of order n has an even $[2, b]$-factor if $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geqslant$ $\max \left\{\frac{2 n}{2+b}, 3\right\}$ for any nonadjacent vertices x and y of G. Moreover, we show that for $b \geqslant 3 a$ and $a>2$, there exists an infinite family of 2-edge-connected graphs G of order n with $\delta(G) \geqslant a$ such that G satisfies the condition $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)>\frac{2 a n}{a+b}$ for any nonadjacent vertices x and y of G, but has no even $[a, b]$-factors. In particular, the infinite family of graphs gives a counterexample to the conjecture of Matsuda on the existence of an even [$a, b]$-factor.

Keywords: $[a, b]$-factor, even factor, 2-edge-connected, minimum degree.
2010 Mathematics Subject Classification: 05C70.

References

[1] M. Kouider and P.D. Vestergaard, On even [2,b]-factors in graphs, Australas. J. Combin. 27 (2003) 139-147.
[2] M. Kouider and P.D. Vestergaard, Even $[a, b]$-factors in graphs, Discuss. Math. Graph Theory 24 (2004) 431-441.
doi:10.7151/dmgt. 1242
[3] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391-416. doi:10.1016/S0021-9800(70)80033-3
[4] H. Matsuda, Ore-type conditions for the existence of even [2,b]-factors in graphs, Discrete Math. 304 (2005) 51-61. doi:10.1016/j.disc.2005.09.009
[5] W.T. Tutte, Graph factors, Combinatorica 1 (1981) 79-97. doi:10.1007/BF02579180

Revised 17 June 2016
Accepted 15 July 2016

