SATURATION SPECTRUM OF PATHS AND STARS

Jill Faudree
Department of Mathematics and Statistics
University of Alaska Fairbanks
e-mail: jrfaudree@alaska.edu
Ralph J. Faudree
Department of Mathematical Sciences
University of Memphis
Ronald J. Gould
Department of Mathematics and Computer Science
Emory University
e-mail: rg@mathcs.emory.edu
Michael S. Jacobson
AND
Brent J. Thomas
Department of Mathematics and Statistical Sciences
University of Colorado Denver
e-mail: michael.jacobson@ucdenver.edu
brent.thomas@ucdenver.edu

Abstract

A graph G is H-saturated if H is not a subgraph of G but the addition of any edge from \bar{G} to G results in a copy of H. The minimum size of an H-saturated graph on n vertices is denoted $\operatorname{sat}(n, H)$, while the maximum size is the well studied extremal number, ex (n, H). The saturation spectrum for a graph H is the set of sizes of H saturated graphs between sat (n, H) and ex (n, H). In this paper we completely determine the saturation spectrum of stars and we show the saturation spectrum of paths is continuous from $\operatorname{sat}\left(n, P_{k}\right)$ to within a constant of ex $\left(n, P_{k}\right)$ when n is sufficiently large.

Keywords: saturation spectrum, stars, paths.
2010 Mathematics Subject Classification: 05C35, 05C05.

References

[1] K. Amin, J. Faudree and R.J. Gould, The edge spectrum of K_{4}-saturated graphs, J. Combin. Math. Combin. Comput. 81 (2012) 233-242.
[2] K. Amin, J. Faudree, R.J. Gould and E. Sidorowicz, On the non-($p-1$)-partite K_{p}-free graphs, Discuss. Math. Graph Theory 33 (2013) 9-23. doi:10.7151/dmgt. 1654
[3] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh and F. Harary, Size in maximal triangle-free graphs and minimal graphs of diameter 2, Discrete Math. 138 (1995) 93-99.
doi:10.1016/0012-365X(94)00190-T
[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs \& Digraphs (CRC Press, 2010).
[5] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.
[6] R.J. Gould, W. Tang, E. Wei and C.-Q. Zhang, The edge spectrum of the saturation number for small paths, Discrete Math. 312 (2012) 2682-2689. doi:10.1016/j.disc.2012.01.012
[7] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210. doi:10.1002/jgt. 3190100209

