Note

ON DOUBLE-STAR DECOMPOSITION OF GRAPHS

Saieed Akbari ${ }^{a}$, Shahab Haghi ${ }^{b}$
Hamidreza Maimani ${ }^{b}$ and Abbas Seify ${ }^{1, b}$
${ }^{a}$ Department of Mathematical Sciences
Sharif University of Technology
Tehran, Iran, P.O. Box 11365-11155
${ }^{b}$ Mathematics Section, Department of Basic Sciences
Shahid Rajaee Teacher Training University Tehran, Iran, P.O. Box 16783-163
e-mail: s_akbari@sharif.edu
sh.haghi@ipm.ir maimani@ipm.ir abbas.seify@gmail.com

Abstract

A tree containing exactly two non-pendant vertices is called a doublestar. A double-star with degree sequence $\left(k_{1}+1, k_{2}+1,1, \ldots, 1\right)$ is denoted by $S_{k_{1}, k_{2}}$. We study the edge-decomposition of graphs into double-stars. It was proved that every double-star of size k decomposes every $2 k$-regular graph. In this paper, we extend this result by showing that every graph in which every vertex has degree $2 k+1$ or $2 k+2$ and containing a 2 -factor is decomposed into $S_{k_{1}, k_{2}}$ and $S_{k_{1}-1, k_{2}}$, for all positive integers k_{1} and k_{2} such that $k_{1}+k_{2}=k$.

Keywords: graph decomposition, double-stars, bipartite graph.
2010 Mathematics Subject Classification: 05C51, 05C05.

References

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (London, Springer, 2011).
doi:10.1007/978-3-642-21919-1
[2] A. Bondy and U.S.R. Murty, Graph Theory (Graduate Texts in Mathematics, Springer, 2008).

[^0][3] S.I. El-Zanati, M. Ermete, J. Hasty, M.J. Plantholt and S. Tipnis, On decomposing regular graphs into isomorphic double-stars, Discuss. Math. Graph Theory 35 (2015) 73-79. doi:10.7151/dmgt. 1779
[4] M. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17-27. doi:10.1016/0012-365X(91)90396-J
[5] F. Jaeger, C. Payan and M. Kouider, Partition of odd regular graphs into bistars, Discrete Math. 46 (1983) 93-94. doi:10.1016/0012-365X(83)90275-3
[6] A. Kötzig, Problem 1, in: Problem session, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXIV (1979) 913-915.
[7] G. Ringel, Problem 25, in: Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963 (Prague, 1964), 162.

[^0]: ${ }^{1}$ Corresponding author.

