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Abstract

A set S of vertices of a graph G is a dominating set if every vertex not
in S is adjacent to a vertex of S and is a total dominating set if every vertex
of G is adjacent to a vertex of S. The cardinality of a minimum dominat-
ing (total dominating) set of G is called the domination (total domination)
number. A set that does not dominate (totally dominate) G is called a non-
dominating (non-total dominating) set of G. A partition of the vertices of G
into non-dominating (non-total dominating) sets is a non-dominating (non-
total dominating) set partition. We show that the minimum number of sets
in a non-dominating set partition of a graph G equals the total domination
number of its complement G and the minimum number of sets in a non-total
dominating set partition of G equals the domination number of G. This per-
spective yields new upper bounds on the domination and total domination
numbers. We motivate the study of these concepts with a social network
application.

Keywords: domination, total domination, non-dominating partition, non-
total dominating partition.

2010 Mathematics Subject Classification: 05C69.

1Research supported in part by the University of Johannesburg.
2Research supported in part by the University of Johannesburg and the South African Na-

tional Research Foundation.

Full PDF

DMGT Page

http://dx.doi.org/10.7151/dmgt.1895
https://www.dmgt.uz.zgora.pl/publish/pdf.php?doi=1895
https://www.dmgt.uz.zgora.pl/


References

[1] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination,

independence, and irredundance, J. Graph Theory 3 (1979) 241–249.
doi:10.1002/jgt.3190030306

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in
Graphs (Marcel Dekker, Inc. New York, 1998).

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced
Topics (Marcel Dekker, Inc. New York, 1998).

[4] P. Heggernes and J.A. Telle, Partitioning graphs into generalized dominating sets ,
Nordic J. Comput. 5 (1998) 128–142.

[5] M.A. Henning, Trees with large total domination number , Util. Math. 60 (2001)
99–106.
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