THE SMALLEST NON-AUTOGRAPH

Benjamin S. Baumer
Program in Statistical & Data Sciences
Smith College
e-mail: bbaumer@smith.edu

Yijin Wei
Department of Mathematics and Statistics
Smith College
e-mail: ywei@smith.edu

AND

Gary S. Bloom
Department of Computer Science
City College

Abstract

Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograph, and S is a signature for G. While it is known that many common families of graphs are autographs, and that infinitely many graphs are not autographs, a non-autograph has never been exhibited. In this paper, we identify the smallest non-autograph: a graph with 6 vertices and 11 edges. Furthermore, we demonstrate that the infinite family of graphs on n vertices consisting of the complement of two non-intersecting cycles contains only non-autographs for $n \geq 8$.

Keywords: graph labeling, difference graphs, autographs, monographs.

2010 Mathematics Subject Classification: Primary 05C78; Secondary 05C60.
References

Received 29 May 2015
Accepted 25 September 2015