ON LONGEST CYCLES IN ESSENTIALLY 4-CONNECTED PLANAR GRAPHS

Igor Fabrici ${ }^{a *}$, Jochen Harant ${ }^{b}$
AND
Stanislav Jendrol ${ }^{a}$
${ }^{a}$ Institute of Mathematics
P.J. Šafárik University in Košice, Slovakia
${ }^{b}$ Institute of Mathematics Ilmenau University of Technology, Germany

Abstract

A planar 3 -connected graph G is essentially 4 -connected if, for any 3separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4connected planar graph on n vertices contains a cycle C such that $|V(C)| \geq$ $\frac{2 n+4}{5}$. For a cubic essentially 4 -connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least $\frac{3}{4} n$ vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of G are presented if G is an essentially 4 -connected planar graph of maximum degree 4 or G is an essentially 4-connected maximal planar graph.

Keywords: planar graph, longest cycle.
2010 Mathematics Subject Classification: 05C10, 05C38.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] I. Fabrici, J. Harant and S. Jendrol, Paths of low weight in planar graphs, Discuss. Math. Graph Theory 28 (2008) 121-135. doi:10.7151/dmgt. 1396

[^0][3] B. Grünbaum and J. Malkevitch, Pairs of edge-disjoint Hamilton circuits, Aequationes Math. 14 (1976) 191-196.
doi:10.1007/BF01836218
[4] B. Jackson and N.C. Wormald, Longest cycles in 3-connected planar graphs, J. Combin. Theory Ser. B 54 (1992) 291-321. doi:10.1016/0095-8956(92)90058-6
[5] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341-345. doi:10.1002/(SICI)1097-0118(199704)24:4<341::AID-JGT6 > 3.0.CO;2-O
[6] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176. doi:10.1002/jgt.3190070205
[7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116. doi:10.1090/S0002-9947-1956-0081471-8
[8] C.-Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521-529. doi:10.1002/jgt.3190110409

Received 16 June 2015
Revised 23 September 2015
Accepted 23 September 2015

[^0]: *Supported in part by Research and Development Operating Program for the project "University Science Park Technicom for innovative applications with support of knowledge technologies", code ITMS: 26220220182, co-financed from European funds.

