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Abstract

A graph property is a set of (countable) graphs. A homomorphism from a
graph G to a graphH is an edge-preserving map from the vertex set of G into
the vertex set of H; if such a map exists, we write G → H. Given any graph
H, the hom-property →H is the set of H-colourable graphs, i.e., the set of
all graphs G satisfying G → H. A graph property P is of finite character if,
whenever we have that F ∈ P for every finite induced subgraph F of a graph
G, then we have that G ∈ P too. We explore some of the relationships of the
property attribute of being of finite character to other property attributes
such as being finitely-induced-hereditary, being finitely determined, and being
axiomatizable. We study the hom-properties of finite character, and prove
some necessary and some sufficient conditions on H for →H to be of finite
character. A notable (but known) sufficient condition is that H is a finite
graph, and our new model-theoretic proof of this compactness result extends
from hom-properties to all axiomatizable properties. In our quest to find an
intrinsic characterization of those H for which →H is of finite character,
we find an example of an infinite connected graph with no finite core and
chromatic number 3 but with hom-property not of finite character.

1Supported in part by the National Research Foundation of South Africa (Grant Number
90841).

Full PDF

DMGT Page

http://dx.doi.org/10.7151/dmgt.1873
https://www.dmgt.uz.zgora.pl/publish/pdf.php?doi=1873
https://www.dmgt.uz.zgora.pl/


Keywords: (countable) graph, homomorphism (of graphs), property of
graphs, hom-property, (finitely-)induced-hereditary property, finitely deter-
mined property, (weakly) finite character, axiomatizable property, compact-
ness theorems, core, connectedness, chromatic number, clique number, in-
dependence number, dominating set.

2010 Mathematics Subject Classification: 05C63.

References

[1] B.L. Bauslaugh, Core-like properties of infinite graphs and structures , Discrete
Math. 138 (1995) 101–111.
doi:10.1016/0012-365X(94)00191-K

[2] B.L. Bauslaugh, Cores and compactness of infinite directed graphs , J. Combin. The-
ory Ser. B 68 (1996) 255–276.

[3] B.L. Bauslaugh, List-Compactness of directed graphs , Graphs Combin. 17 (2001)
17–38.
doi:10.1007/s003730170052

[4] M. Borowiecki, I. Broere, M. Frick, G. Semanǐsin and P. Mihók, A survey of hered-
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